1. Опустим высоты ВН и СР.AD-BC=AH+PD.AB>AH (1) и CD>PD (2), ак гипотенузы прямоугольных треугольниковАВН и СDP. Сложив (1) и (2), имеем: АВ+CD>AH+PD.Что и требовалось доказать.2. В треугольниках HBD и PCA BD>HP+PD (1) и AC>HP+AH (2).Сложим (1) и (2): AC+BD>HP+PD+HP+AH, но НР=ВС и PD+HP+AH = AD.Тогда AC+BD>ВС+AD, что и требовалось доказать.3.AD-BC=AH+PD, но АН<AB, a PD<CD тогда тем более AD-BC<AB+СD.Что и требовалось доказать.4. Диагонали трапеции точкой их пересечения образуют два подобных треугольникаВОС и AOD с коэффициентом подобия k=BC/AD. Значит и диагонали точкой пересечения делятся в таком же отношении, а не пополам, что и требовалось доказать.
ответ: а) 42,5 см.
Объяснение:
Периметр треугольника по таким данным задачи зависит от того чему равно основание. То есть имеет место два варианта:
1 вариант. Если основание (АС) равно 17 см. Такой треугольник не существует. 8,5+8,5=17 ?
a+b>c, a+c>b, b+c>a, (a>0, b>0, c>0), где a, b и с - длины сторон треугольника.
Другими словами, треугольник существует тогда и только тогда, когда сумма любых двух его сторон больше третьей стороны.
В нашем случае a+b=с, что недопустимо.
***
2 вариант. Основание АС =8,5 см.
Тогда Р=АВ+ВС+АС=2*17+8,5= 42,5 см.