Нарисуем треугольник, проведем высоту из вершины прямоуго угла и обозначим ее СН.
У высоты прямоугольного треугольника есть свои собственные свойства.
Одно из них:
1) Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком ВН гипотенузы, заключенным между катетом и высотой.
Катет СВ=9
Отрезки, на которые высота поделила гипотенузу, равны 2х и 3х (2х:3х=2:3), причем 3х ближе к вершине В ( проекция стороны СВ)
А всего в гипотенузе таких отрезков 5х.
СВ²=ВН·ВА
81=3х·5х
5х²=81
х=0,6√15
ВН=3·0,6√15=1,8√15
НА=2·0,6√15=1,2√15
2)Отношение отрезков гипотенузы, на которые высота делит ее, равно отношению соответственных катетов.
9:АС=1,8√15:1,2√15
9:АС=1,5
АС=6
S АВС=9·6:2=27 ( ?)²
sin 240° = sin (180° + 60°) = - sin 60° = - √3/2
cos (- 405°) = cos 405° = cos (360° + 45°) = cos 45° = √2/2
cos330° = cos (360° - 30°) = cos 30° = √3/2
sin (- 225°) = - sin 225° = - sin (180° + 45°) = sin 45° = √2/2
tg 150° = tg (180° - 30°) = - tg 30° = - √3/3
tg 300° = tg (360° - 60°) = - tg 60° = - √3
sin (- 390°) = - sin 390° = - sin (360° + 30°) = - sin 30° = - 1/2
tg 22° - нельзя вычислить по формулам приведения.
Возможно, имелся в виду
tg 225° = tg (180° + 45°) = tg 45° = 1
tg (- 315°) = - tg 315° = - tg (270° + 45°) = ctg 45° = 1
Нарисуем треугольник, проведем высоту из вершины прямоуго угла и обозначим ее СН.
У высоты прямоугольного треугольника есть свои собственные свойства.
Одно из них:
1) Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком ВН гипотенузы, заключенным между катетом и высотой.
Катет СВ=9
Отрезки, на которые высота поделила гипотенузу, равны 2х и 3х (2х:3х=2:3), причем 3х ближе к вершине В ( проекция стороны СВ)
А всего в гипотенузе таких отрезков 5х.
СВ²=ВН·ВА
81=3х·5х
5х²=81
х=0,6√15
ВН=3·0,6√15=1,8√15
НА=2·0,6√15=1,2√15
2)Отношение отрезков гипотенузы, на которые высота делит ее, равно отношению соответственных катетов.
9:АС=1,8√15:1,2√15
9:АС=1,5
АС=6
S АВС=9·6:2=27 ( ?)²