Объяснение: Примем сторону квадрата равной х. Стороны квадрата попарно равны и параллельны.
Следовательно, углы при МР и АС равны, ∆ ВМР подобен ∆ АВС - он правильный, поэтому ВМ=МР=х
В прямоугольном ∆ АМL гипотенуза АМ=АВ-ВМ=1-х
АL=ML:tg60°=x:√3
С другой стороны, АL=AM•cos60° =>
x/√3=(1-x)•1/2 =>
2x=√3-x√3 =>
2x+x√3=√3 =>
x•(2+√3)=√3, откуда х=√3:(2+√3).
Умножив числитель и знаменатель получившейся дроби на (2-√3), получим √3(2-√3):(4-3)=2√3-3
Можно применить т.Пифагора из того же треугольника и получить тот же результат, или подобие треугольников АВН ( ВН - высота) и АМL, так как в подобных треугольниках отношение катетов одного из них равно отношению катетов другого.
ответ: √3:(2+√3) или, иначе, 2√3-3
Объяснение: Примем сторону квадрата равной х. Стороны квадрата попарно равны и параллельны.
Следовательно, углы при МР и АС равны, ∆ ВМР подобен ∆ АВС - он правильный, поэтому ВМ=МР=х
В прямоугольном ∆ АМL гипотенуза АМ=АВ-ВМ=1-х
АL=ML:tg60°=x:√3
С другой стороны, АL=AM•cos60° =>
x/√3=(1-x)•1/2 =>
2x=√3-x√3 =>
2x+x√3=√3 =>
x•(2+√3)=√3, откуда х=√3:(2+√3).
Умножив числитель и знаменатель получившейся дроби на (2-√3), получим √3(2-√3):(4-3)=2√3-3
Можно применить т.Пифагора из того же треугольника и получить тот же результат, или подобие треугольников АВН ( ВН - высота) и АМL, так как в подобных треугольниках отношение катетов одного из них равно отношению катетов другого.
Значит, CK = АМ = 5х , ВК = ВМ = 8х
ВМ = ВК = 8х , АМ = АЕ = 5х , СК = СЕ = 5х – как отрезки касательных к окружности
AB + BC + AC = P abc
8x + 5x + 8x + 5x + 5x + 5x = 72
36x = 72
x = 2
Из этого следует, что ВМ = ВК = 16 , АМ = АЕ = 10 , СК = СЕ = 10 → АВ = ВС = 26 , АС = 20
Рассмотрим ∆ АВЕ (угол АЕВ = 90°):
По теореме Пифагора:
АВ² = АЕ² + ВЕ²
ВЕ² = 26² – 10² = 676 – 100 = 576
ВЕ = 24
S abc =( 1/2 ) × AC × BE = ( 1/2 ) × 20 × 24 = 240
ОТВЕТ: S abc = 240