Пусть С - прямой угол, AB - гипотенуза ( = 17), АС - больший катет (= 15). по т. Пифагора ВС = 8. Пусть СН - высота, СК - медиана. из треугольника АВС сosА = 15/17 из треугольника АСН сosА = АН/15 тогда АН = 225/17 т.к. треугольник АСН прямоугольный, то по т. Пифагора найдем СН. СР = 120/17
что касается медианы, то можно попробовать найти по теореме синусов угол А или В в треугольнике АВС и уже с известным углом опять-таки по теореме синусов найти СК в треугольнике АСК или ВСК (в зависимости от угла, который вы выбирете).
з.ы. не люблю синусы, а вы просите подсказать лишь ход решения, поэтому с чистой совестью не решаю))
Октаэдр в задаче можно представить себе следующим образом. Пусть есть трехмерная система координат. На каждой из осей надо отложить от начала координат отрезки равной длины в обе стороны. Получится 6 точек, которые и будут вершинами октаэдра. К примеру, если вершины (0,0,a) (0,0,-a) (0,a,0) (0,-a,0) (a,0,0) (-a,0,0) то ребро равно c = a√2. Если очень хочется, можно найти, чему равно а при заданной длине ребра c = √6(√2 + 1). a = √3(√2 + 1); Но это не очень существенно. Легко видеть, что в каждой из плоскостей, содержащих две оси координат, лежат одинаковые квадраты со стороной c. Вот тут самая важная часть решения. "С точки зрения вписанного куба" сечения, проходящие через оси XOZ и YOZ - это прямоугольники сo сторонами b и b√2 где b - ребро куба. Эти сечения проходят через ребро куба, параллельное оси Z и диагонали горизонтальных граней. В сечении плоскостью XOY лежит квадрат со стороной b, НЕ касающийся квадрата со стороной c (октаэдра). То есть получается такая задача для нахождения b (при заданном c) "В квадрат со стороной c = √6(√2 + 1) вписан прямоугольник со сторонами b и b√2, стороны которого параллельны диагоналям квадрата. Надо найти b^2". Очевидно, что c = (b/2)*√2 + (b√2/2)*√2 = (b√2/2)(√2 + 1); Отсюда b = 2√3; b^2 = 12;
по т. Пифагора ВС = 8.
Пусть СН - высота, СК - медиана.
из треугольника АВС сosА = 15/17
из треугольника АСН сosА = АН/15
тогда АН = 225/17
т.к. треугольник АСН прямоугольный, то по т. Пифагора найдем СН. СР = 120/17
что касается медианы, то можно попробовать найти по теореме синусов угол А или В в треугольнике АВС и уже с известным углом опять-таки по теореме синусов найти СК в треугольнике АСК или ВСК (в зависимости от угла, который вы выбирете).
з.ы. не люблю синусы, а вы просите подсказать лишь ход решения, поэтому с чистой совестью не решаю))
Пусть есть трехмерная система координат. На каждой из осей надо отложить от начала координат отрезки равной длины в обе стороны. Получится 6 точек, которые и будут вершинами октаэдра.
К примеру, если вершины (0,0,a) (0,0,-a) (0,a,0) (0,-a,0) (a,0,0) (-a,0,0)
то ребро равно c = a√2. Если очень хочется, можно найти, чему равно а при заданной длине ребра c = √6(√2 + 1). a = √3(√2 + 1); Но это не очень существенно.
Легко видеть, что в каждой из плоскостей, содержащих две оси координат, лежат одинаковые квадраты со стороной c.
Вот тут самая важная часть решения.
"С точки зрения вписанного куба" сечения, проходящие через оси XOZ и YOZ - это прямоугольники сo сторонами b и b√2 где b - ребро куба.
Эти сечения проходят через ребро куба, параллельное оси Z и диагонали горизонтальных граней.
В сечении плоскостью XOY лежит квадрат со стороной b, НЕ касающийся квадрата со стороной c (октаэдра).
То есть получается такая задача для нахождения b (при заданном c)
"В квадрат со стороной c = √6(√2 + 1) вписан прямоугольник со сторонами b и b√2, стороны которого параллельны диагоналям квадрата. Надо найти b^2".
Очевидно, что c = (b/2)*√2 + (b√2/2)*√2 = (b√2/2)(√2 + 1);
Отсюда b = 2√3; b^2 = 12;