Прямые CD и C1D1 лежат в параллельных плоскостях. Значит они либо скрещиваются либо параллельны. Поскольку плоскость задается двумя пересекающимися прямыми,то точки C,D ,C1,D1 лежат в одной плоскости. То прямые СD и C1D1 тоже лежат в одной плоскости назовем ее b. Но скрещивающиеся прямые не лежат в одной плоскости. Тогда СD ||C1D1. Откуда из подобия треугольников по накрест лежащим углам верно что: CK/KC1=CD/C1D1 С1D1=x CK/(CC1-CK)=5/x (CK:CC1)/(1-CK:CC1)=5/x (2/7)/(1-2/7)=5/x 2/5=5/x x=25/2=12,5 ответ:12,5
Значит они либо скрещиваются либо параллельны.
Поскольку плоскость задается двумя пересекающимися прямыми,то точки C,D ,C1,D1 лежат в одной плоскости. То прямые СD и C1D1 тоже лежат в одной плоскости назовем ее b. Но скрещивающиеся прямые не лежат в одной плоскости. Тогда СD ||C1D1.
Откуда из подобия треугольников по накрест лежащим углам верно что: CK/KC1=CD/C1D1 С1D1=x
CK/(CC1-CK)=5/x
(CK:CC1)/(1-CK:CC1)=5/x
(2/7)/(1-2/7)=5/x
2/5=5/x
x=25/2=12,5
ответ:12,5
1) в ΔАСН:
СН=0,5 (катет, лежащий против угла в 30° равен половине гипотенузы)
По теореме Пифагора:
АН² = АС² - СН² = 1 - 0,25 = 0,75
АН = √0,75 = 0,5 √3
в ΔАВС:
cos A = AC / AB
AB = 1 ÷ (√3 / 2) = 2√3 / 3
BH = AB - AH = 2√3 / 3 - 0,5√3 = (4√3 - 3√3) / 6 = √3 / 6
ответ: √3 / 6
2) АВ = 2 ВС = 2 (катет, лежащий против угла в 30° равен половине гипотенузы)
∠В = 180° - ∠С - ∠А = 60°
cos B = BH / BC
BH = 1/2 × 1 = 1/2
AH = AB - BH = 2 - 1/2 = 1 1/2 = 1,5
ответ: 1,5
3) sin A = CH / AC
CH = sin A × AC = 3/5 × 4 = 12/5 = 2,4
ответ: 2,4