В треугольнике ABC проведена средняя линия NM (NM || AC). В полученном треугольнике BNM проведена средняя линия PF (PF || BN). Определите периметр треугольника PMF, если периметр треугольника ABC составляет 120 см.
ЗАДАЧА 1 1) найдем сторону правильного треугольника: а=Р/3=45/3=15 2) Зная сторону, найдем радиус окружности по формуле: R=(a√3)/3 Получим: R=(15√3)/3=5√3 3) Если правильный четырехугольник вписан в окружность, то радиус этой окружности равен половине диагонали: R=d/2, Подставим найденное значение R: 5√3=d/2. Отсюда d=10√3 4) Зная диагональ, найдем сторону правильного четырехугольника: а=d/√2 Получим: a=(10√3)/√2=5√6
ЗАДАЧА 2 1) Если площадь квадрата равна 72, то его сторона равна √72=6√2 2) Зная сторону квадрата, найдем радиус вписанной в него окружности: r=a/2=(6√2)/2=3√2 3) Зная радиус, найдем площадь круга: S=πR²=π(3√2)²=36π
ЗАДАЧА 3 Длину дуги ищем по формуле: l=(πRα)/180 Получим: l=(8π·150)/180=(20π)/3
α=180°: Sс = 8π ≈ 25,13 см²
α=90°: Sс = 4π ≈ 12,57 см²
α=60°: Sс = π*8/3 ≈ 8,38 см²
Объяснение:
Площадь круга:
Sк = π*R², где R - радиус круга.
Sк = 16π см²
Площадь сектора линейно зависит от величины центрального угла. Для сектора с центральным углом α, выраженным в градусах, формула площади выглядит так:
Sс = π*R²*α/360.
Если сравнить формулы площади круга и площади сектора, то можно сделать вывод, что:
Sс = Sк*α/360.
Значит для
α=180°: Sс = 16π*180/360 = 8π ≈ 25,13 см²
α=90°: Sс = 16π*90/360 = 4π ≈ 12,57 см²
α=60°: Sс = 16π*60/360 = π*8/3 ≈ 8,38 см²
1) найдем сторону правильного треугольника: а=Р/3=45/3=15
2) Зная сторону, найдем радиус окружности по формуле: R=(a√3)/3
Получим: R=(15√3)/3=5√3
3) Если правильный четырехугольник вписан в окружность, то радиус этой окружности равен половине диагонали: R=d/2, Подставим найденное значение R: 5√3=d/2. Отсюда d=10√3
4) Зная диагональ, найдем сторону правильного четырехугольника: а=d/√2
Получим: a=(10√3)/√2=5√6
ЗАДАЧА 2
1) Если площадь квадрата равна 72, то его сторона равна √72=6√2
2) Зная сторону квадрата, найдем радиус вписанной в него окружности: r=a/2=(6√2)/2=3√2
3) Зная радиус, найдем площадь круга: S=πR²=π(3√2)²=36π
ЗАДАЧА 3
Длину дуги ищем по формуле: l=(πRα)/180
Получим: l=(8π·150)/180=(20π)/3