Прямоугольный треугольник (основание призмы) вписан в основание цилиндра так, что гипотенуза этого треугольника равна диаметру цилиндра D.
Поскольку катет, прилегающий к углу 60º равен 6 см, то гипотенуза
D = 6 : cos 60° = 6 : 0.5 = 12 (см)
Большая грань призмы - прямоугольник со сторонами, равными D и H (Н - высота призмы и одновременно высота цилиндра)
Так как диагональ большей боковой грани призмы составляет с плоскостью её основания угол в 45º, то треугольник, образованный диагональю большей боковой гранью призмы , диаметром цилиндра и высотой цилиндра, является прямоугольным равнобедренным треугольником, то есть высота цилиндра равна его диаметру
Н = D = 12 cм.
Объём цилиндра равен
V = 0.25πD² · H = 0.25π · 12² · 12 = 432π (cм³) ≈ 1357 см³
Объём цилиндра равен 432π cм³ ≈ 1357 см³
Объяснение:
Прямоугольный треугольник (основание призмы) вписан в основание цилиндра так, что гипотенуза этого треугольника равна диаметру цилиндра D.
Поскольку катет, прилегающий к углу 60º равен 6 см, то гипотенуза
D = 6 : cos 60° = 6 : 0.5 = 12 (см)
Большая грань призмы - прямоугольник со сторонами, равными D и H (Н - высота призмы и одновременно высота цилиндра)
Так как диагональ большей боковой грани призмы составляет с плоскостью её основания угол в 45º, то треугольник, образованный диагональю большей боковой гранью призмы , диаметром цилиндра и высотой цилиндра, является прямоугольным равнобедренным треугольником, то есть высота цилиндра равна его диаметру
Н = D = 12 cм.
Объём цилиндра равен
V = 0.25πD² · H = 0.25π · 12² · 12 = 432π (cм³) ≈ 1357 см³
<ВАР=30⁰, <APB = 60⁰ в треугольнике АВР. Смежный угол <APC=120⁰
Треугольник АРС - равнобедренный (АР=РС по доказанному), РО - высота, медиана, биссектриса, т.е. <АРО=<СРО=60⁰, <РАО=30⁰ (сумма углов треугольника равна 180⁰)
<ВАД=90⁰, <ВАР=30⁰, <РАС=30⁰ <ОАТ=90-(30+30)=30⁰, значит <РАТ=60⁹
Получили, треугольник АРТ - равносторонний, т.к. <P=<A=<t=60⁰
Значит, РТ=АР=АТ=8см, Р(АРСТ)=8*4=32(см)
ответ:32см