Центр вписанной окружности - точка пересечения биссектрис. На рисунке указаны биссектрисы, выходящие из острых углов прямоугольного треугольника. Пусть угол отмеченный зеленым α, а красным β; 2α+2β = 90°; Значит α+β=45°; Значит тупой угол треугольника, образованного биссектрисами равен 180°-45°=135°. Стороны, прилежащие к этому углу, по условию равны √54 и √10. По теореме косинусов имеем: гипотенуза =
Далее слишком большие вычисления. Они аналогичны тем, что выше. Тоже через теорему косинусов, ну можно местами и синусов :)
Осевое сечение усеченного конуса - равнобедренная трапеция. основания: а=22 см (R₁*2), b=32 см (R₂*2) боковая сторона - образующая конуса l =13 см найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса. по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм ответ: расстояние между центрами оснований усеченного конуса 12 см
Далее слишком большие вычисления. Они аналогичны тем, что выше. Тоже через теорему косинусов, ну можно местами и синусов :)
основания:
а=22 см (R₁*2), b=32 см (R₂*2)
боковая сторона - образующая конуса l =13 см
найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса
перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса.
по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм
ответ: расстояние между центрами оснований усеченного конуса 12 см