В треугольниках ABC и DEF равны пары сторон AB и DE, BC и EF, а также углы BAC и EDF. При каком дополнительном условии можно утверждать, что треугольники ABC и DEF равны?
Выберите все правильные варианты ответа.
∠BAC — острый
∠BAC — прямой
∠BAC — тупой
∠BCA — острый
∠BCA — прямой
∠BCA — тупой
205: Дано:
прямоугольный треугольник АВС,
угол С = 90 градусов,
АС : ВС = 12 : 5,
АВ = 39 сантиметров.
Найти катеты АС, ВС — ?
Рассмотрим прямоугольный треугольник АВС. Пусть длина катета АС = 12 * х сантиметров, а длина катета ВС = 5 * х сантиметров. Тогда по теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
АС^2 + ВС^2 = АВ^2:
(12х)^2 + (5х)^2 = 39^2;
144х^2 + 25 х^2 =1 521;
169х^2 = 1 521;
х^2 = 1 521 : 169;
х^2 = 9;
х = 3;
12 * 3 = 36 сантиметров — длина катета АС;
5 * 3 = 15 сантиметров — длина катета ВС.
ответ: 36 сантиметров; 15 сантиметров.
206: пусть х - первый катет, а y - второй:
y^2-17y+60=0
D=289-240=
y1=12
y2=5
найдем x:
x=17-y
x-17-12 x=17-5
х = 5 x=12
ответ: (5;12), (12;5)
Подробнее - на -
пусть АВСА1В1С1 наклонная треугольая призма...тогда ее боковые грани--это параллелограммы...площадь грани АВА1В1 равна 30,а площадь исчисляется по формуле S=ah, следовательно сторона равна 10 . а опущенная на нее высота h1=30/10=3.точно также с гранью ВСВ1С1:
h2=40/10=4.получается что угол между этими высотами прямой.соединим основания высот,получается прямоугольный треугольник.находим его гипотенузу: 3 в квадрате + 4 в квадрате= 25, то есть гипотенуза равна 5.а это высота третьей грани.значит площадь третьей грани = 5*10=50.
площадь боковой поверхности равна 30+40+50=120 квад.метров
Объяснение: