Для начала найдем отношение ВР/РС. Для этого: Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD. ∆АКМ ~ ∆BKD по двум углам (1). ∆АРС ~ ∆DРВ по двум углам (2). Из (1) BD/AM=4 и BD=4AM = 2AC. Из (2) BP/PC=2. ВМ - медиана и по ее свойствам Sabm=Scbm. Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc. Sakm=Sabc*1/(2*5)=(1/10)*Sabc. Треугольники ABP и APC - треугольники с общей высотой к стороне ВC. Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc. Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc. Sabk/Skpcm=(2/5)/(7/30)=12/7.
Касательная NM перпендикулярна радиусу ON. ONM - прямоугольный треугольник. Катет против угла 30° равен половине гипотенузы. ON=OM/2 => ∠NMO=30°. Касательные из одной точки составляют равные углы с прямой, проходящей через эту точку и центр окружности.
∠NMK=2∠NMO =30°*2 =60°
Это четвёртый рисунок
∠BAM найден в задаче (3) =30°. Отрезки касательных из одной точки равны, AM=BM, △AMB - равнобедренный, ∠BAM=∠ABM.
∠AMB=180°-2∠BAM =180°-30°*2 =120°
Это первый рисунок Касательная KL перпендикулярна радиусу OK. OKL - прямоугольный треугольник. Катет против угла 60° равен другому катету, умноженному на √3.
KL=OK√3 =6√3
Это третий рисунок Треугольник OAB - равносторонний (OA=OB - радиусы), ∠OAB=60°. Касательная AC перпендикулярна радиусу OA, ∠OAС=90°.
∠BAC=∠OAC-∠OAB =90°-60° =30°
Это пятый рисунок Касательная MN перпендикулярна радиусу OM. OMN - египетский треугольник (3:4:5) cо множителем 3 (OM=4*3; ON=5*3). MN=3*3=9
Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD.
∆АКМ ~ ∆BKD по двум углам (1).
∆АРС ~ ∆DРВ по двум углам (2).
Из (1) BD/AM=4 и BD=4AM = 2AC.
Из (2) BP/PC=2.
ВМ - медиана и по ее свойствам Sabm=Scbm.
Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc.
Sakm=Sabc*1/(2*5)=(1/10)*Sabc.
Треугольники ABP и APC - треугольники с общей высотой к стороне ВC.
Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc.
Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc.
Sabk/Skpcm=(2/5)/(7/30)=12/7.
Это второй рисунок
Касательная NM перпендикулярна радиусу ON. ONM - прямоугольный треугольник. Катет против угла 30° равен половине гипотенузы. ON=OM/2 => ∠NMO=30°. Касательные из одной точки составляют равные углы с прямой, проходящей через эту точку и центр окружности.
∠NMK=2∠NMO =30°*2 =60°
Это четвёртый рисунок
∠BAM найден в задаче (3) =30°. Отрезки касательных из одной точки равны, AM=BM, △AMB - равнобедренный, ∠BAM=∠ABM.
∠AMB=180°-2∠BAM =180°-30°*2 =120°
Это первый рисунок Касательная KL перпендикулярна радиусу OK. OKL - прямоугольный треугольник. Катет против угла 60° равен другому катету, умноженному на √3.
KL=OK√3 =6√3
Это третий рисунок Треугольник OAB - равносторонний (OA=OB - радиусы), ∠OAB=60°. Касательная AC перпендикулярна радиусу OA, ∠OAС=90°.
∠BAC=∠OAC-∠OAB =90°-60° =30°
Это пятый рисунок Касательная MN перпендикулярна радиусу OM. OMN - египетский треугольник (3:4:5) cо множителем 3 (OM=4*3; ON=5*3). MN=3*3=9