В трапеции диагональ и боковая сторона, выходящие из вершины тупого угла, равны 26 и 25 соответственно Меньшее основание равно 5, а высота трапеции равна 24. Найдите площадь трапеции.
Проведем MD параллельно AP; D∈BC Применим теорему Фалеса: Если на одной стороне угла отложить какие-либо отрезки, через их концы провести параллельные прямые, то отношение отрезков на одной стороне угла будет равно отношению отрезков на другой стороне⇒ BK:KM=BP:PD=10:9 и CM:AM=CD:DP=1:1, так как AM - медиана Пусть BP=10x; PD=DC=9x⇒BC=28x BK=10y;KM=9y⇒BM=19y Обозначим угол CBM=α⇒ Smbc=1/2*BM*BC*sinα=1/2*19y*28x*sinα=14*19xysinα=266xysinα Skbp=1/2*BK*BP*sinα=1/2*10x*10y*sinα=50xysinα⇒ Skpcm=Smbc-skbp=266xysinα-50xysinα=216xysinα Медиана делит тр-ник на 2 равновеликих тр-ка⇒ Sabc=2Smbc=2*266xysinα=532xysinα⇒ Skpmc:Sabc=216xysinα:532xysinα=216:532=54:133 ответ: 54:133
По свойству биссектрисы AR/AB = RC/BC AR/AB = (AC - AR)/BC AR = 35/11; RC = 42/11 AP/AC = (AB - AP)/BC AP = 35/13; BP = AB - AP = 30/13 BQ/AB = (BC - BQ)/AC BQ = 5/2; QC = BC - BQ = 7/2 S = S(ABC) = 6√6 (по формуле Герона) S(PQR) = S - S(APR) - S(PBQ) - S(RQC) S(ABC)/S(APR) = (AB·AC)/(AP·AR) (если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы) S(APR) = S(ABC)·AP·AR/(AB·AC) = S·35/143 аналогично находятся S(RQC) = S·7/22 и S(PBQ) = S·5/26 S(PQR) = (210√6)/143
Применим теорему Фалеса:
Если на одной стороне угла отложить какие-либо отрезки, через их концы провести параллельные прямые, то отношение отрезков на одной стороне угла будет равно отношению отрезков на другой стороне⇒
BK:KM=BP:PD=10:9 и CM:AM=CD:DP=1:1, так как AM - медиана
Пусть BP=10x; PD=DC=9x⇒BC=28x
BK=10y;KM=9y⇒BM=19y
Обозначим угол CBM=α⇒
Smbc=1/2*BM*BC*sinα=1/2*19y*28x*sinα=14*19xysinα=266xysinα
Skbp=1/2*BK*BP*sinα=1/2*10x*10y*sinα=50xysinα⇒
Skpcm=Smbc-skbp=266xysinα-50xysinα=216xysinα
Медиана делит тр-ник на 2 равновеликих тр-ка⇒
Sabc=2Smbc=2*266xysinα=532xysinα⇒
Skpmc:Sabc=216xysinα:532xysinα=216:532=54:133
ответ: 54:133
AR/AB = RC/BC
AR/AB = (AC - AR)/BC
AR = 35/11; RC = 42/11
AP/AC = (AB - AP)/BC
AP = 35/13; BP = AB - AP = 30/13
BQ/AB = (BC - BQ)/AC
BQ = 5/2; QC = BC - BQ = 7/2
S = S(ABC) = 6√6 (по формуле Герона)
S(PQR) = S - S(APR) - S(PBQ) - S(RQC)
S(ABC)/S(APR) = (AB·AC)/(AP·AR) (если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы)
S(APR) = S(ABC)·AP·AR/(AB·AC) = S·35/143
аналогично находятся S(RQC) = S·7/22 и S(PBQ) = S·5/26
S(PQR) = (210√6)/143