В тетраэдре DABC точка M отмечена на середине ребра AC. Известно, что в этом тетраэдре BA=BC;DA=DC. Докажи, что прямая, на которой находится ребро AC, перпендикулярна плоскости (BDM). 1. Определи вид треугольников АВС и DAC 2. Какой угол образует медиана с основанием этих треугольников? ответ: ... градусов. 3. Согласно признаку, если прямая ... к ... ... прямым в некой плоскости, то она ... к этой плоскости.
Треугольник аов=треугольнику вос по стороне и двуи прилежащим к ней углам. у них ов-общая, угол аов=углу вос по условию, угол аво=углу сво, так как во-биссектриса у равных треугольников соответственные стороны равны, поэтому ав=вс и треугольник авс-равнобедренный с основанием ас. аов=110градусов, 1/2угла а+1/2углав+110градусов=180градусов,1/2(угола+уголв)=180градусов-110градусов=70градусовугол а+уголв=70градусов*2=140градусов, тогдаугол с=180градусов -140градусов=40градусов. так как треугольник равнобедренный то у него углы при основании равны, угол а=40градусов, угол в=180градусов -(40+40)=100 градусовответ 40градусов, 40градусов, 100градусов
Проведем высоту к основанию=36. По св-ву высота-она же медиана, значит точка падения высоты -сер-на основания. в рез. мы получим 2 р/б треугольника у которых гипотенуза-боковая сторона тр. а катеты: высота и половина основания. По св-ву р/б тр. углы при основании равны =а 2а+120=180 2а=60 а=30 по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2 1/2c^2*sqrt(3)/2=9c c=36/sqrt(3)
По св-ву р/б тр. углы при основании равны =а
2а+120=180
2а=60
а=30
по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона
тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c
но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2
1/2c^2*sqrt(3)/2=9c
c=36/sqrt(3)