В равностороннем треугольнике проведена медиана AM = 9 см. Определи расстояние от точки M до стороны AC. 1. Угол MAC = °. 2. Расстояние от точки M до стороны AC равно см
Обозначим точку пересечения прямых ВК и CD буквой Е. Тогда треугольники АВР и СРЕ подобны по двум углам: ∠АРВ = ∠ЕРС как вертикальные, а ∠РСЕ = ∠ВАР как накрест лежащие при параллельных АВ и CD и секущей АС. Из подобия этих треугольников:
СЕ/АВ = CP/AP = 16/11.
Но CD =АВ как противоположные стороны параллелограмма. Следовательно, DE = 16x - 11x = 5x.
Треугольники АВК и DEK подобны по двум углам: ∠DKE = ∠AKB как вертикальные, а ∠ABK = ∠DEK как накрест лежащие при параллельных АВ и CE и секущей ВЕ.
1. Угол между АС и MKF.
FC₁ ║ KC, FC₁ = KC как половины противоположных ребер грани куба, ∠КСС₁ = 90°, значит КСС₁F - прямоугольник, ⇒ KF ║ СС₁.
Ребро СС₁ перпендикулярно плоскости АВС, значит и KF ⊥АВС.
Если плоскость проходит через прямую, перпендикулярную другой плоскости, то она так же перпендикулярна этой плоскости:
MKF⊥АВС. Тогда плоскость MKF перпендикулярна любой прямой, лежащей в этой плоскости, в том числе и АС.
∠(АС; MKF) = 90°.
2. Угол между АС₁ и ВСС₁.
Угол между прямой и плоскостью равен углу между прямой и ее проекцией на эту плоскость.
АВ⊥ВСС₁, тогда ВС₁ - проекция АС₁ на плоскость ВСС₁ и
∠АС₁В - искомый.
Если ребро куба равно а, то диагональ грани куба равна а√2.
ΔАС₁В: ∠АВС₁ = 90°, ВС₁ = а√2, АВ = а.
tg∠AC₁B = AB / BC₁ = a / (a√2) = 1/√2
∠AC₁B = arctg(1/√2).
3. Угол между B₁D и АСС₁.
DO⊥АС по свойству диагоналей квадрата, DO⊥AA₁, так как АА₁⊥АВС, тогда DO⊥АСС₁. Значит ОО₁ - проекция B₁D на плоскость АСС₁.
∠DTO - искомый.
OD = 1/2 BD = a√2/2
B₁D = a√3 как диагональ куба, тогда DT = a√3/2.
Из прямоугольного треугольника DOT:
sin∠DTO = OD/DT = a√2/2 / (a√3/2) = √2/√3 = √6/3
∠DTO = arcsin (√6/3)
4. Угол между DD₁ и АМF.
Проведем прямую MF и отметим точки Т и Р пересечения ее с прямыми А₁В₁ и А₁D₁ соответственно.
Прямая АТ пересекает ребро ВВ₁ в точке Е, а прямая АР пересекает ребро DD₁ в точке Н.
АЕМFН - сечение куба плоскостью AMF.
MF║B₁D₁, значит MF⊥A₁C₁, MF⊥AA₁, тогда MF⊥АСС₁.
Плоскость AMF проходит через прямую MF, значит
AMF⊥ACC₁.
Проведем A₁S перпендикулярно линии пересечения этих плоскостей. Тогда A₁S⊥AMF, значит AS - проекция АА₁ на AMF, и
∠А₁АS - искомый (DD₁║AA₁ и угол между АА₁ и AMF равен углу между DD₁ и AMF).
RC₁ = 3/4 A₁C₁ (MF - средняя линия ΔB₁C₁D₁ и RC₁ равен половине половины диагонали B₁D₁)
RC₁ = 3/4 a√2
Из прямоугольного треугольника A₁AR:
tg∠A₁AR = A₁R / AA₁ = 3/4 a√2 / a = 3√2/4
∠A₁AR = arctg(3√2/4)
АК:DK = 11:5.
Объяснение:
Обозначим точку пересечения прямых ВК и CD буквой Е. Тогда треугольники АВР и СРЕ подобны по двум углам: ∠АРВ = ∠ЕРС как вертикальные, а ∠РСЕ = ∠ВАР как накрест лежащие при параллельных АВ и CD и секущей АС. Из подобия этих треугольников:
СЕ/АВ = CP/AP = 16/11.
Но CD =АВ как противоположные стороны параллелограмма. Следовательно, DE = 16x - 11x = 5x.
Треугольники АВК и DEK подобны по двум углам: ∠DKE = ∠AKB как вертикальные, а ∠ABK = ∠DEK как накрест лежащие при параллельных АВ и CE и секущей ВЕ.
Из подобия этих треугольников:
АК/KD = AB/DE = 11/5.