Выясним, о каком многоугольнике речь. Из каждой вершины выпуклого n-угольника можно провести диагонали во все вершины , кроме 2-х смежных и самой себя, т.е. n-3 диагонали. Однако, любая диагональ из А в С есть одновременно и диагональ из С в А. Поэтому, у выпуклого n-угольника число диагоналей d=n·(n-3)/2. В то же время, по условиям задачи, у нашего многоугольника d=3n. Решаем уравнение: 3n=n·(n-3)/2; 6n=n²-3n; 9n=n²; n=9 Таким образом, речь идет о 9-угольнике. Поскольку правильный n-угольник можно представить, как n смыкающихся треугольников с общей вершиной, сумма всех внутренних углов правильного n-угольника равна n·180°-360°. В данном случае, для 9-угольника: 9·180°-360°=1260°
Найдем площадь треугольника по формуле Герона
, где
Подставим получившееся значение в первое уравнение
Замена
Вернемся к замене
Найдем больший угол треугольника по теореме косинусов
1) Стороны: 3; 4; 3,5
Значит ∠B < 90° ⇒ ΔABC - остроугольный.
2) Стороны: 3; 4; 2
Значит ∠B > 90° ⇒ ΔABC - тупоугольный.
По условию треугольник тупоугольный, значит AB = 2, а P = 3 + 4 + 2 = 9
ответ: 9
Из каждой вершины выпуклого n-угольника можно провести диагонали во все вершины , кроме 2-х смежных и самой себя, т.е. n-3 диагонали.
Однако, любая диагональ из А в С есть одновременно и диагональ из С в А. Поэтому, у выпуклого n-угольника число диагоналей d=n·(n-3)/2.
В то же время, по условиям задачи, у нашего многоугольника d=3n.
Решаем уравнение: 3n=n·(n-3)/2; 6n=n²-3n; 9n=n²; n=9
Таким образом, речь идет о 9-угольнике.
Поскольку правильный n-угольник можно представить, как n смыкающихся треугольников с общей вершиной, сумма всех внутренних углов правильного n-угольника равна n·180°-360°.
В данном случае, для 9-угольника: 9·180°-360°=1260°