A. Продлим медиану АМ до пересечения с продолжением стороны ВС трапеции. Треугольники АМD и СMQ подобны по двум углам (<MCQ=<MDA как накрест лежащие при параллельных BQ и AD, <CMQ =<AMD как вертикальные). Из подобия имеем: CQ/AD=СM/MD=1 (так как СМ=MD - дано). Итак, CQ=AD. Тогда BQ=BC+CQ. Но BC=(1/3)*AD (дано), а CQ=AD (доказано выше). Следовательно, BQ=(1/3)*AD+AD, отсюда 3BQ=4AD. BQ/AD=4/3. Треугольники АРD и ВРQ подобны по двум углам (<РВQ=<РDA как накрест лежащие при параллельных BQ и AD и секущей BD, <ВРQ =<AРD как вертикальные). Из подобия имеем: ВР/PD=ВQ/AD=4/3. Что и требовалось доказать.
В. Площадь трапеции АВСD Sabcd=(BC+AD)*BH/2=(2/3)AD*BH. Площадь треугольника AMD равна Samd=(1/2)*AD*PH. Площадь треугольника ABD равна Sabd=(1/2)*AD*BH. Площадь треугольника AMD равна Samd=(1/2)*AD*MK. Но МК=(1/2)*ВН (из подобия треугольников AMD и CMQ). Значит Samd=(1/4)*AD*ВН. Площадь треугольника AРD равна Saрd=(1/2)*AD*РТ. Но РТ=(3/7)*ВН (из подобия треугольников AMQ и APD). Значит Saрd=(3/14)*AD*ВН. Площадь треугольника РМD равна Spmd=Samd-Sapd=(1/4-3/14)*AD*ВН =(1/28)*AD*ВН Sbcmp=Sabcd-Sabd-Spmd=(2/3-1/2-1/28)AD*BH = (11/84)*AD*BH. (2/3)AD*BH=56 (дано). Тогда AD*BH=84. Sbcmp=(11/84)*84=11.
1) По формуле Герона найдём площадь тр-ка S = корень (р*(р-а) *(р-в) *(р-с) ) р ( полупериметр) = (8+6+4)/2 = 9см S² = 9*1*3*5 = 135, тогда S = 3* (корень из15 ) 2) меньшая высота тр-ка Н опущена на большую сторону 8см тогда S = 0,5*8*Н = 3* (корень из15 ) Н = 0,75 (корень из15 ) стороны: а = 6, в = 4, с = 8 Нс = (2S)/C Ha = (2S) / a Hb = (2S)/b S = корень (р*(р-а) *(р-в) *(р-с) ) р = 1/2*(а+в+с) р = 9 S = приблиз 12 см2 Нс = 3 см. Нв = 6 см На = 4см отсюда меньшая высота - проведенная к стороне с
Из подобия имеем: CQ/AD=СM/MD=1 (так как СМ=MD - дано).
Итак, CQ=AD. Тогда BQ=BC+CQ. Но BC=(1/3)*AD (дано), а CQ=AD (доказано выше). Следовательно, BQ=(1/3)*AD+AD, отсюда
3BQ=4AD. BQ/AD=4/3.
Треугольники АРD и ВРQ подобны по двум углам (<РВQ=<РDA как накрест лежащие при параллельных BQ и AD и секущей BD,
<ВРQ =<AРD как вертикальные).
Из подобия имеем: ВР/PD=ВQ/AD=4/3. Что и требовалось доказать.
В. Площадь трапеции АВСD Sabcd=(BC+AD)*BH/2=(2/3)AD*BH.
Площадь треугольника AMD равна Samd=(1/2)*AD*PH.
Площадь треугольника ABD равна Sabd=(1/2)*AD*BH.
Площадь треугольника AMD равна Samd=(1/2)*AD*MK.
Но МК=(1/2)*ВН (из подобия треугольников AMD и CMQ). Значит Samd=(1/4)*AD*ВН.
Площадь треугольника AРD равна Saрd=(1/2)*AD*РТ.
Но РТ=(3/7)*ВН (из подобия треугольников AMQ и APD). Значит Saрd=(3/14)*AD*ВН.
Площадь треугольника РМD равна
Spmd=Samd-Sapd=(1/4-3/14)*AD*ВН =(1/28)*AD*ВН
Sbcmp=Sabcd-Sabd-Spmd=(2/3-1/2-1/28)AD*BH = (11/84)*AD*BH.
(2/3)AD*BH=56 (дано). Тогда AD*BH=84.
Sbcmp=(11/84)*84=11.