В равнобелренной трапеции боковая сторона делиться точкой касания вписаной оккружности на отрезки с длинами 6 см и 9 см. Найдите площадь круга в кв. См , вписанного в трапецию
а) Отрезки касательных, проведенных из одной точки, равны.
DA=DC, EB=EC
P(MDE)= MD+DC+ME+EC =MD+DA+ME+EB =MA+MB
Кроме того, MA=MB => P(MDE)/2 =MA=MB
б) Радиусы OA и OB перпендикулярны касательным. Сумма противоположных углов четырехугольника AOBM равна 180, ∠AOB+∠M=180. По свойству отрезков касательных из одной точки* OD - биссектриса ∠AOC, OE - биссектриса ∠BOC.
∠DOE= ∠AOC/2 +∠BOC/2 =∠AOB/2 =(180-∠M)/2
----------------------------
*△DOA=△DOC по катету (радиус) и общей гипотенузе, их соответствующие элементы равны. Аналогично △EOB=△EOC.
В треуг.АВС проведем медианы( они же высоты) АК,СD,ВР Рассмотрим треуг. АСК -прямоугольный,т.как АК-медиана и высота АК делит сторону ВС пополам. ВС=ВК+КС ВК=КС=3:2=1,5 - катет АС=3 - гипотенуза Находим катет АК (теор.Пифагора): АК2=АС2 - КС2 АК2=3*3 - 1,5*1,5 АК=корень из 6,75 АК=2,598 Точка О - центр пересечения медиан и делит медианы в отношении 2:1,начиная от вершины: АО:ОК=2:1 АО+ОК=3(части) - составляют 2,598 АО=2части, АО=2,598:3*2=1,732 Рассмотрим треуг.АОМ ОМ-перпендикуляр,значит треуг.АОМ-прямоугольный АО и ОМ - катеты, АМ - гипотенуза и расстояние от точки М до вершины А треуг.АВС Находим АМ(теор.Пифагора): АМ2=АО2+ОМ2 Ом=1;АО=1,732; АМ2=1*1+1,732*1,732 АМ=корень из 4 АМ=2 Точка О - центр пересечения медиан и ,значит, О-центр описанной около треуг.АВС окружности.АО=ОС=ОВ - радиусы.Значит, точка М равноудалена от вершин треугольника АВС.Поэтому
а) Отрезки касательных, проведенных из одной точки, равны.
DA=DC, EB=EC
P(MDE)= MD+DC+ME+EC =MD+DA+ME+EB =MA+MB
Кроме того, MA=MB => P(MDE)/2 =MA=MB
б) Радиусы OA и OB перпендикулярны касательным. Сумма противоположных углов четырехугольника AOBM равна 180, ∠AOB+∠M=180. По свойству отрезков касательных из одной точки* OD - биссектриса ∠AOC, OE - биссектриса ∠BOC.
∠DOE= ∠AOC/2 +∠BOC/2 =∠AOB/2 =(180-∠M)/2
----------------------------
*△DOA=△DOC по катету (радиус) и общей гипотенузе, их соответствующие элементы равны. Аналогично △EOB=△EOC.
Рассмотрим треуг. АСК -прямоугольный,т.как АК-медиана и высота
АК делит сторону ВС пополам.
ВС=ВК+КС
ВК=КС=3:2=1,5 - катет
АС=3 - гипотенуза
Находим катет АК (теор.Пифагора):
АК2=АС2 - КС2
АК2=3*3 - 1,5*1,5
АК=корень из 6,75
АК=2,598
Точка О - центр пересечения медиан и делит медианы в отношении 2:1,начиная от вершины: АО:ОК=2:1
АО+ОК=3(части) - составляют 2,598
АО=2части, АО=2,598:3*2=1,732
Рассмотрим треуг.АОМ
ОМ-перпендикуляр,значит треуг.АОМ-прямоугольный
АО и ОМ - катеты, АМ - гипотенуза и расстояние от точки М до вершины А треуг.АВС
Находим АМ(теор.Пифагора):
АМ2=АО2+ОМ2
Ом=1;АО=1,732;
АМ2=1*1+1,732*1,732
АМ=корень из 4
АМ=2
Точка О - центр пересечения медиан и ,значит, О-центр описанной около треуг.АВС окружности.АО=ОС=ОВ - радиусы.Значит, точка М равноудалена от вершин треугольника АВС.Поэтому