так как боковые стороны равны, то трапеция равнобедренная, проведем две высоты в трапеции, расстояние между высотами и концами оснований равно (13-9)/2=2(см)
получим прямоугольный треугольник с известными двумя сторонами 4 и 2. Это прямоугольный треугольник, если в прямоугольном треугольнике катет равен половине гипотенузы, то угол лежащий против этого катета равне 30 градусов, угол трапеции равен сумме найденного угла и прямого угла, т. е 30+90=120, второй угол равен 180-120=60
1. По правилу определения ромба мы знаем, что у ромба все стороны равны, следовательно рассмотрит векторы его сторон:
вектор MN=(5-2;3-2)=(3;1)
Вектор Nk=(6-5;6-3)=(1;3)
вектор Kp=(-3;-1)
ВЕКтор РМ=(1;3)
Теперь объединяем это фигурной скобкой и пишем , следовательно MN=NK=KP=PM, а из этого следуют что четырёх угольник MNPK - квадрат, по определению.
2. По свойству ромба, у него диагонали не равны, следовательно рассмотрим векторы -диагонали.
МК=(3;3)
NP=(-2;2)
Из этого следует, что диагонали квадрата не равны, следовательно это ромб, по определению
так как боковые стороны равны, то трапеция равнобедренная, проведем две высоты в трапеции, расстояние между высотами и концами оснований равно (13-9)/2=2(см)
получим прямоугольный треугольник с известными двумя сторонами 4 и 2. Это прямоугольный треугольник, если в прямоугольном треугольнике катет равен половине гипотенузы, то угол лежащий против этого катета равне 30 градусов, угол трапеции равен сумме найденного угла и прямого угла, т. е 30+90=120, второй угол равен 180-120=60
ответ 120, 120, 60, 60