. В равнобедренной трапеции АВСД меньшее основание ВС равно 6см, высота СЕ = 2 см, а боковая сторона образует с основанием АД угол 600 . Найти большее основание АД трапеции
Расстояние от точки до сторон квадрата равно 13 см. Найдите расстояние от точки до плоскости квадрата, если сторона квадрата равна 10 см. можете объяснить, с рисунком
Объяснение:
Расстояние от точки Т до плоскости отрезок ТО ⊥ ( АВС) . Значит ТО перпендикулярен любой прямой лежащей в плоскости.
Т.к. расстояние -это перпендикуляр, то опустим перпендикуляры из точки Т на стороны квадрата : ТН₁ , ТН₂ , ТН₃ , ТН₄. Тогда прямоугольные треугольники ( на рисунке желтые) равны по катету и гипотенузе ( апофема боковой грани).⇒точка О -центр вписанной окружности и еще т. пересечения диагоналей квадрата.
Н₁ Н₃= 10 , ОН₁=5 , из ΔТОН₁ , по т. Пифагора ТО=√(13³-5²)=√144=12 (см)
Расстояние от точки до сторон квадрата равно 13 см. Найдите расстояние от точки до плоскости квадрата, если сторона квадрата равна 10 см. можете объяснить, с рисунком
Объяснение:
Расстояние от точки Т до плоскости отрезок ТО ⊥ ( АВС) . Значит ТО перпендикулярен любой прямой лежащей в плоскости.
Т.к. расстояние -это перпендикуляр, то опустим перпендикуляры из точки Т на стороны квадрата : ТН₁ , ТН₂ , ТН₃ , ТН₄. Тогда прямоугольные треугольники ( на рисунке желтые) равны по катету и гипотенузе ( апофема боковой грани).⇒точка О -центр вписанной окружности и еще т. пересечения диагоналей квадрата.
Н₁ Н₃= 10 , ОН₁=5 , из ΔТОН₁ , по т. Пифагора ТО=√(13³-5²)=√144=12 (см)
12 см если точка А лежит между точками С и В.
3 см если точка С лежит между точками А и В.
Объяснение:
Точки на прямой можно расположить в двух вариантах:
Первый: точка А лежит между точками С и В.
___С_4,5/_ 4,5А___7,5/___7,5В___
9 см 15 см
Тогда расстояние между серединами отрезков АВ и АС равно:
15:2 + 9:2 = 7,5 + 4,5 = 12 см.
Второй: точка С лежит между точками А и В.
Тогда расстояние между серединами отрезков АВ и АС равно:
АВ = 15 см
I7,5I - 7.5 см половина отрезка АВ
__А___4,5/I__СВ__
АС= 9 см
15:2 - 9:2 = 7,5 - 4,5 = 3 см.