В равнобедренном треугольнике с длиной основания 63 cм проведена биссектриса угла ∡ABC. Используя второй признак равенства треугольников, докажи, что отрезок BD является медианой, и определи длину отрезка AD.  Рассмотрим треугольники ΔABD и Δ (треугольник записать в алфавитном порядке); 1. так как прилежащие к основанию углы данного равнобедренного треугольника равны, то ∡ A = ∡ ; 2. так как проведена биссектриса, то ∡ = ∡ CBD; 3. стороны AB=CB у треугольников ΔABD и ΔCBD равны, так как данный ΔABC — . По второму признаку равенства треугольников ΔABD и ΔCBD равны. Значит, равны все соответствующие элементы, в том числе стороны AD=CD. А это означает, что отрезок BD является медианой данного треугольника и делит сторону AC пополам. AD= см
Стона тр-ка равна а=Р/3=24/3=8см. Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см. Пусть сторона пятиугольника равна х. Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника. Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36° sin36=(х/2)/R, x=2Rsin36=(16sin36·√3)/3≈5.43см.
Відповідь:
70см
Пояснення:
№76.
Необхідне знання про те, що висота в рівнобедренному трикутнику , що проведена до основи є медианою. Тобто DO=OF і відповідно DF=2DO.
P(DEO)=DE+EO+DO;
DE+8+DO= 43
DE+DO=43-8;
DE+DO=35(см).
P(DEF)=DE+EF+DF=2DE+2DO=2(DE+DO)=35*2=70(см)
104. Міра другого кута 180°-50°=130°
109.
а) нехай ∠1=4х, ∠2=5х
4х+5х=180°;
9х=180°;
х=180°:9=20°
∠1=4*20°=80°
∠2=5*20°=100°
Відповідь: 80° , 100°
б) нехай ∠1=3х, ∠2=2х
3х+2х=180°;
5х=180°;
х=180°:5;
х=36°
∠1=3*36°=108°
∠2=2*36°=72°
Відповідь: 108° , 72°
113. Вертикальні кути- рівні. Суміжні в сумі дають 180°.
даний кут 10° 50° 60° 90° 120° 170°
вертикальний 10° 50° 60° 90° 120° 170°
суміжний 170° 130° 120° 90° 60° 10°
Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см.
Пусть сторона пятиугольника равна х.
Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника.
Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36°
sin36=(х/2)/R,
x=2Rsin36=(16sin36·√3)/3≈5.43см.