Так как углы при основании АС равны (∠А =∠С), то △АВС - равнобедренный.
В равнобедренном треугольнике боковые стороны равны.
АВ=ВС.
2) Рассмотрим △BDC и △FDE.
BD=DF, CD= ED, ∠EDF =∠CDB - как вертикальные.
Следовательно △BDC = △FDE по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: BC = EF.
Значит АВ=ВС=EF.
3) Рассмотрим △EHF и △KHF.
EH = KH, ∠EHF =∠KHF, HF - общая.
△EHF = △KHF по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: EF = FK.
Значит АВ=ВС=EF = FK
Таким образом мы доказали, что АВ = FK
Для доказательства равенства двух отрезков использовали следующие :
Рассматривали эти отрезки как стороны двух треугольников, и доказывали, что эти треугольники равны. Рассматривали эти отрезки как стороны одного треугольника, и доказывали, что этот треугольник равнобедренный.
Так как плоскость АВ₁С₁ пересекает параллельные плоскости по параллельным прямым, то проводим DC₁||AB₁
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D По теореме Пифагора DC₁²=6²+8²=100 DC₁=10 РК- средняя линия треугольника DCC₁ PK=5
PT|| AD и PT || ВС РТ=4
AD⊥CD ⇒ РТ⊥СD AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК РТ⊥ РК Аналогично, МТ ⊥МК Сечение представляет собой прямоугольник Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18
Объяснение:
1)Рассмотрим △АВС.
Так как углы при основании АС равны (∠А =∠С), то △АВС - равнобедренный.
В равнобедренном треугольнике боковые стороны равны.
АВ=ВС.
2) Рассмотрим △BDC и △FDE.
BD=DF, CD= ED, ∠EDF =∠CDB - как вертикальные.
Следовательно △BDC = △FDE по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: BC = EF.
Значит АВ=ВС=EF.
3) Рассмотрим △EHF и △KHF.
EH = KH, ∠EHF =∠KHF, HF - общая.
△EHF = △KHF по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: EF = FK.
Значит АВ=ВС=EF = FK
Таким образом мы доказали, что АВ = FK
Для доказательства равенства двух отрезков использовали следующие :
Рассматривали эти отрезки как стороны двух треугольников, и доказывали, что эти треугольники равны. Рассматривали эти отрезки как стороны одного треугольника, и доказывали, что этот треугольник равнобедренный.Плоскость АВ₁С₁ - это плоскость АВ₁С₁D
По теореме Пифагора DC₁²=6²+8²=100
DC₁=10
РК- средняя линия треугольника DCC₁
PK=5
PT|| AD и PT || ВС
РТ=4
AD⊥CD ⇒ РТ⊥СD
AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК
РТ⊥ РК
Аналогично, МТ ⊥МК
Сечение представляет собой прямоугольник
Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18