в равнобедренном треугольнике KLM, на основании KM указана точка P. От этой точки проведены перпендикуляры к двум боковым сторонам, соответственно PA И PB. Докажите, что LP - биссектриса треугольника KLM, если KA = MB
1)28см. все понятно. только чертеж нарисовать правильный (параллелограмм получается). а АС и ВД- это диагонали, они делятся друг дружкой пополам в точке О. получается (20:2)+(10:2)= 15. а третья сторона 13 потому что СД параллельно по признаку парраллелограмма АВ, значит равны 2)д-135град. с-45 оч просто не буду объяснять 3) рисуем окружность.. . в ней диагональ. дальше отрезок так, чтоб его середина было в центре окруж. точка О- ентр окружности. ОД и ОВ- они равны потому что они пополам разделены точк О. АО и ОС тож равны как диагональ параллелогр. соединяем точки А Д С В. получается параллелограм потому что у парраллелограма диагонали при пересечении друг дружки делятся пополам. (там какое-то специальное своиство есть.. . я прсто не помню)
Дано: а и b параллельные прямые, и прямая а пересекает плоскость α.
Обозначим точку пересечения а и плоскости буквой А.
Известно, что через две параллельные прямые можно провести плоскость, притом только одну. Пусть это будет плоскость β.
Прямая а лежит в плоскости β, точка А принадлежит прямой а, значит, А тоже принадлежит плоскости β. Точка А лежит в плоскости α и в плоскости β.
Если две плоскости имеют общую точку, то они имеют общую прямую, которая является линией пересечения этих плоскостей ( аксиома).
Обозначим общую прямую плоскостей α и β буквой m. Прямые a, b и m находятся в плоскости β
Если на плоскости одна из параллельных прямых пересекает какую либо прямую, то вторая прямая тоже пересекает эту прямую.
Точку пересечения прямых b и m обозначим B
Так как точка B находится на прямой m,то точка B находится в плоскости α и является единственной общей точкой прямой b и плоскости α.
.Следовательно, прямая b пересекает плоскость α.
2)д-135град. с-45 оч просто не буду объяснять
3) рисуем окружность.. . в ней диагональ. дальше отрезок так, чтоб его середина было в центре окруж. точка О- ентр окружности. ОД и ОВ- они равны потому что они пополам разделены точк О. АО и ОС тож равны как диагональ параллелогр. соединяем точки А Д С В. получается параллелограм потому что у парраллелограма диагонали при пересечении друг дружки делятся пополам. (там какое-то специальное своиство есть.. . я прсто не помню)