Формула через синус:
S = ab * sin(∠ab)/2
Синус через косинус:
sin(∠ab) = √(1 - (cos(∠ab))^2)
Теорема косинусов:
c^2 = a^2 + b^2 - 2ab * cos(∠ab)
c^2 - a^2 - b^2 = 2ab * cos(∠ab)
(c^2 - a^2 - b^2)/(2ab) = cos(∠ab)
Подставим найденный косинус во второе уравнение
sin(∠ab) = √(1 - ((c^2 - a^2 - b^2)/(2ab))^2)
Подставим наше уравнение в первое уравнение
S = ab * √(1 - ((c^2 - a^2 - b^2)/(2ab))^2) * 1/2
После того, как ты подставишь значения, получится 37/2 = 18,5
Я сделал проверку (по формуле Герона, конечно же) получился такой же ответ
P.s
Я прикрепил скрин из калькулятора
В первом уравнении я обозначил площадь за x, а во втором за S
Верхний четырёхугольник рис.6,(слева буквы не видно,обозначим её Х):
ХО=МN (по условию),
OM=XN (по условию),
ОN=ON (общая сторона),
следовательно:
треуг.ОХN=треуг.ОМN по 3 признаку равенства треугольников (по 3-м сторонам).
2) рис.7
<АВF= <PFB (по условию),
<AFB= < PBF (по условию),
ВF= BF (общая сторона),след-но:
тр.АВF= тр.РВF по 2 признаку равенства треугольников (по стороне и 2-м ,прилежащим к ней углам)
3) рис.9.а)
<А= <В - след-но треуг-к МВА-равнобедренный и
МВ=МА
<МВD=180°- <В (cмежные
<MAC=180° - <A углы),след-но:
<МВD=<MAC (т.к <А = <В),
DB=AC ( по условию) , след-но:
тр.МВD = тр MAC по 1 признаку равенства треугольников (по 2-м сторонам и углу между ними)
б)продолжение прикреплю.
Формула через синус:
S = ab * sin(∠ab)/2
Синус через косинус:
sin(∠ab) = √(1 - (cos(∠ab))^2)
Теорема косинусов:
c^2 = a^2 + b^2 - 2ab * cos(∠ab)
c^2 - a^2 - b^2 = 2ab * cos(∠ab)
(c^2 - a^2 - b^2)/(2ab) = cos(∠ab)
Подставим найденный косинус во второе уравнение
sin(∠ab) = √(1 - ((c^2 - a^2 - b^2)/(2ab))^2)
Подставим наше уравнение в первое уравнение
S = ab * √(1 - ((c^2 - a^2 - b^2)/(2ab))^2) * 1/2
После того, как ты подставишь значения, получится 37/2 = 18,5
Я сделал проверку (по формуле Герона, конечно же) получился такой же ответ
P.s
Я прикрепил скрин из калькулятора
В первом уравнении я обозначил площадь за x, а во втором за S
Верхний четырёхугольник рис.6,(слева буквы не видно,обозначим её Х):
ХО=МN (по условию),
OM=XN (по условию),
ОN=ON (общая сторона),
следовательно:
треуг.ОХN=треуг.ОМN по 3 признаку равенства треугольников (по 3-м сторонам).
2) рис.7
<АВF= <PFB (по условию),
<AFB= < PBF (по условию),
ВF= BF (общая сторона),след-но:
тр.АВF= тр.РВF по 2 признаку равенства треугольников (по стороне и 2-м ,прилежащим к ней углам)
3) рис.9.а)
<А= <В - след-но треуг-к МВА-равнобедренный и
МВ=МА
<МВD=180°- <В (cмежные
<MAC=180° - <A углы),след-но:
<МВD=<MAC (т.к <А = <В),
DB=AC ( по условию) , след-но:
тр.МВD = тр MAC по 1 признаку равенства треугольников (по 2-м сторонам и углу между ними)
б)продолжение прикреплю.