Сподсчётами всё плохо что нашла то можно так: уравнение прямой, проходящей через две данные точки, имеет вид (у - у0) / (у1 - у0) = (х - х0) / (х1 - х0) подставив координаты точек, будем иметь (у - 5) / (11 - 5) = (х - 1) / (-2 - 1) (у - 5) / 6 = (х - 1) / (-3) -3(у - 5) = 6(х - 1) -3у + 15 = 6х - 6 6х + 3у - 21 = 0 2х + у - 7 = 0 - это уравнение прямой, проходящей через точки m(1; 5) и n(-2; 11). у = - 2х + 7 можно еще так: уравнение прямой имеет вид у = kx + b поставим координаты данных точек. получим 5 = k + b 11 = -2k + b вычитая из первого равенства второе, будем иметь -6 = 3k, отсюда k = -2. 5 = -2 + b, отсюда b = 7 подставив значения k и b в уравнение прямой, получим у = -2х + 7 ответ. у = -2х + 7ня
Если все грани наклонены под одинаковыми углами, то высота пирамиды падает в центр вписанной окружности, то есть в точку О пересечения биссектрис треугольника. Треугольник со сторонами 5, 12 и 13 - прямоугольный, угол С - прямой. AC = 5; BC = 12; AB = 13 Периметр треугольника P = 5 + 12 + 13 = 30; площадь S = 5*12/2 = 30 Найдем радиус вписанной окружности. r = OK = OM = ON = 2S/P = 2*30/30 = 2 см Высота H = OD = 4√2 см Апофемы, перпендикулярные к ребрам основания DK = DM = DN = √(r^2 + H^2) = √(4 + 16*2) = √36 = 6 см Площади боковых граней S(ABD) = DN*AB/2 = 6*13/2 = 3*13 = 39 кв.см. S(ACD) = DK*AC/2 = 6*5/2 = 3*5 = 15 кв.см. S(BCD) = DM*BC/2 = 6*12/2 = 6*6 = 36 кв.см. S(бок) = S(ABD) + S(ACD) + S(BCD) = 39 + 15 + 36 = 90 кв.см.
Треугольник со сторонами 5, 12 и 13 - прямоугольный, угол С - прямой.
AC = 5; BC = 12; AB = 13
Периметр треугольника P = 5 + 12 + 13 = 30; площадь S = 5*12/2 = 30
Найдем радиус вписанной окружности.
r = OK = OM = ON = 2S/P = 2*30/30 = 2 см
Высота H = OD = 4√2 см
Апофемы, перпендикулярные к ребрам основания
DK = DM = DN = √(r^2 + H^2) = √(4 + 16*2) = √36 = 6 см
Площади боковых граней
S(ABD) = DN*AB/2 = 6*13/2 = 3*13 = 39 кв.см.
S(ACD) = DK*AC/2 = 6*5/2 = 3*5 = 15 кв.см.
S(BCD) = DM*BC/2 = 6*12/2 = 6*6 = 36 кв.см.
S(бок) = S(ABD) + S(ACD) + S(BCD) = 39 + 15 + 36 = 90 кв.см.