Контрольный тест по теме: "Прямоугольные треугольники. Построение треугольника по трем элементам"
Система оценки: 5 балльная
Список во теста
Во Найдите углы треугольников, на которые медиана разбивает равносторониий треугольник.
Варианты ответов
определить невозможно
60°,40°,80°
60°,45°,45°
60°,30°,90°
Во Найдите сумму внешних углов треугольника, взятых по одному при каждой вершине.
Варианты ответов
определить невозможно
270°
360°
180°
Во Концы хорды окружности соединены с центром. Найдите углы получившегося треугольника, если один из них на 36 градусов больше другого. Рассмотрите все случаи.
Варианты ответов
48°,48°,84° или 38°,71°,71°
48°,48°,84° или 36°,72°,72°
78°,60°,42° или 48°,48°,84°
38°,71°,71° или 36°,72°,72°
Во Варианты ответов
KM < MN
KN = MN
MK = MN
MK > KN
KN + KM > MN
Во Одна из сторон равнобедренного треугольника на 12 см меньше другой. Найдите стороны треугольника, если его периметр равен 33 см. Рассмотрите все случаи.
Варианты ответов
13 см, 13 см, 7 см или 7 см, 7 см, 19 см.
3 см, 15 см, 15 см
3 см, 15 см, 15 см или 7 см, 7 см, 19 см
7 см, 7 см, 19 см
Во Варианты ответов
⊿ ABC - разносторонний
∠ KLM=90° ⇒KL ∥ BC
∠ BCO внешний угол ⊿ ABC
∠ DKN внешний угол ⊿ KLM
⊿ ABC - равнобедренный
⊿ ABC - тупоугольный
⊿ ABC - прямоугольный
Во Варианты ответов
BC и MO
нет параллельных отрезков
BA и OK
Во Во Определите вид треугольника по углам и стоорнам, если его углы относятся как:
Для вирішення цього завдання, спочатку знайдемо більшу основу трапеції, використовуючи властивість, що коло вписане в прямокутну трапецію розташоване на серединній лінії.
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції: Р = (6 + х) / 2, де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння: 4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2: 8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння: х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції: S = (a + b) * h / 2, де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола): S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Єтот тест
Контрольный тест по теме: "Прямоугольные треугольники. Построение треугольника по трем элементам"
Система оценки: 5 балльная
Список во теста
Во Найдите углы треугольников, на которые медиана разбивает равносторониий треугольник.
Варианты ответов
определить невозможно
60°,40°,80°
60°,45°,45°
60°,30°,90°
Во Найдите сумму внешних углов треугольника, взятых по одному при каждой вершине.
Варианты ответов
определить невозможно
270°
360°
180°
Во Концы хорды окружности соединены с центром. Найдите углы получившегося треугольника, если один из них на 36 градусов больше другого. Рассмотрите все случаи.
Варианты ответов
48°,48°,84° или 38°,71°,71°
48°,48°,84° или 36°,72°,72°
78°,60°,42° или 48°,48°,84°
38°,71°,71° или 36°,72°,72°
Во Варианты ответов
KM < MN
KN = MN
MK = MN
MK > KN
KN + KM > MN
Во Одна из сторон равнобедренного треугольника на 12 см меньше другой. Найдите стороны треугольника, если его периметр равен 33 см. Рассмотрите все случаи.
Варианты ответов
13 см, 13 см, 7 см или 7 см, 7 см, 19 см.
3 см, 15 см, 15 см
3 см, 15 см, 15 см или 7 см, 7 см, 19 см
7 см, 7 см, 19 см
Во Варианты ответов
⊿ ABC - разносторонний
∠ KLM=90° ⇒KL ∥ BC
∠ BCO внешний угол ⊿ ABC
∠ DKN внешний угол ⊿ KLM
⊿ ABC - равнобедренный
⊿ ABC - тупоугольный
⊿ ABC - прямоугольный
Во Варианты ответов
BC и MO
нет параллельных отрезков
BA и OK
Во Во Определите вид треугольника по углам и стоорнам, если его углы относятся как:
Варианты ответов
разносторонний
равнобедренный
равнобедренный
остроугольный
прямоугольный
тупоугольный
равносторонний
Получите комплекты видеоуроков
Биология 7 класс. Позвоночные животные
Обществознание 7 класс ФГОС
Введение в общую биологию и экологию 9...
Химия 9 класс ФГОС
Мир мультимедиатехнологий 6 класс
Электронная тетрадь по информатике 5...
Алгебра 8 класс ФГОС
Электронная тетрадь по ОБЖ 5 класс
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції:
Р = (6 + х) / 2,
де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння:
4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2:
8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння:
х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції:
S = (a + b) * h / 2,
де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола):
S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Отже, площа трапеції дорівнює 16 см².