Высота основания пирамиды (она же и медиана и биссектриса) равна: ho=a*cos30 = 2*(√3/2) = √3 см. Высоту пирамиды найдём из треугольника, полученного осевым сечением пирамиды через боковое ребро и апофему А. Высота пирамиды H своим основанием делит высоту основания ho в отношении 2:1 считая от вершины. Находим высоту H пирамиды: H = (1/3)ho*tg30° = (√3/3)*(1/√3) = 1/3 см. Апофема А равна √(Н²+((1/3)ho)²) = √((1/9)+3/9) = 2/3 см. Площадь боковой поверхности равна: Sбок = (1/2)А*Р = (1/2)*(2/3)*(2*3) = 2 см². Площадь основания So = a²√3/4 = 2²√3/4 = √3. Площадь полной поверхности пирамиды равна: S =Sбок + So = (2+√3) см².
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
ho=a*cos30 = 2*(√3/2) = √3 см.
Высоту пирамиды найдём из треугольника, полученного осевым сечением пирамиды через боковое ребро и апофему А.
Высота пирамиды H своим основанием делит высоту основания ho в отношении 2:1 считая от вершины.
Находим высоту H пирамиды:
H = (1/3)ho*tg30° = (√3/3)*(1/√3) = 1/3 см.
Апофема А равна √(Н²+((1/3)ho)²) = √((1/9)+3/9) = 2/3 см.
Площадь боковой поверхности равна:
Sбок = (1/2)А*Р = (1/2)*(2/3)*(2*3) = 2 см².
Площадь основания So = a²√3/4 = 2²√3/4 = √3.
Площадь полной поверхности пирамиды равна:
S =Sбок + So = (2+√3) см².
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.