В равнобедренном треугольнике ABC (AB = BC) на медиане BM отмечена точка X. Внутри отрезка AB нашлась такая точка Y, что XY = XC. Найдите величину угла YXC, если угол ABC равен 64 градусам.
Через О проводим диаметр МН и перпендикулярно к нему радиус ОС, (как строить срединный перпендикуляр - ниже) .
Соединим С и Н отрезком и разделим его пополам:
Для этого из т.С и Н чертим полуокружности (можно тем же радиусом, что и первая) так, чтобы они пересеклись по обе стороны от СН.
Точки пересечения полуокружностей соединим прямой, которая пройдет через О, т.к. ∆ НОС - равнобедренный, а срединный перпендикуляр равнобедренного треугольника - биссектриса. Точку пересечения с окружностью обозначим А. Угол СОА=45°.
Ставим ножку циркуля в т. С ( или А - не имеет значения) и раствором циркуля, равным радиусу первой окружности, делаем на ней насечку. Отмечаем т.В. ∆ ВОС - правильный, так как ВО=СО=ВС=R. ⇒
Ну например плоскость треугольника будет альфа , а ромба бета. Если внимательно посмотреть на условие задачи то мы увидим что у них будет общая сторона AB. Чтобы доказать что сторона СD параллельна плоскости альфа (треугольника) нужно обратиться к признаку параллельности прямой и плоскости . Он звучит так: Если прямая , которая не лежит в плоскости , параллельна какой-нибудь прямой плоскости , то она параллельна и самой плоскости. Какая-нибудь прямая на плоскости альфа (например) будет прямая АВ , потому что СD 100% параллельна AB так как они вместе лежат в плоскости ромба. НО одновременно АВ находиться в плоскости треугольника , потому что 2 плоскости пересекаются по этой прямой. Значит СD параллельна АВ не просто как в плоскости ромба , а и как в плоскости треугольника. Значит у нас все сходится с признаком параллельности . Если СD (это какая-нибудь прямая вне плоскости) параллельна какой-нибудь прямой на данной плоскости (имеется ввиду плоскость треугольника ) , то СD параллельна САМОЙ ПЛОСКОСТИ . Доказано! P.S. Если внимательно все прочитать , то все поймешь :D
Чертим окружность с центром О.
Через О проводим диаметр МН и перпендикулярно к нему радиус ОС, (как строить срединный перпендикуляр - ниже) .
Соединим С и Н отрезком и разделим его пополам:
Для этого из т.С и Н чертим полуокружности (можно тем же радиусом, что и первая) так, чтобы они пересеклись по обе стороны от СН.
Точки пересечения полуокружностей соединим прямой, которая пройдет через О, т.к. ∆ НОС - равнобедренный, а срединный перпендикуляр равнобедренного треугольника - биссектриса. Точку пересечения с окружностью обозначим А. Угол СОА=45°.
Ставим ножку циркуля в т. С ( или А - не имеет значения) и раствором циркуля, равным радиусу первой окружности, делаем на ней насечку. Отмечаем т.В. ∆ ВОС - правильный, так как ВО=СО=ВС=R. ⇒
Угол ВОС=60°.
Угол ВОА=60°+45°=105° Построение завершено.
Чтобы доказать что сторона СD параллельна плоскости альфа (треугольника) нужно обратиться к признаку параллельности прямой и плоскости . Он звучит так: Если прямая , которая не лежит в плоскости , параллельна какой-нибудь прямой плоскости , то она параллельна и самой плоскости. Какая-нибудь прямая на плоскости альфа (например) будет прямая АВ , потому что СD 100% параллельна AB так как они вместе лежат в плоскости ромба. НО одновременно АВ находиться в плоскости треугольника , потому что 2 плоскости пересекаются по этой прямой. Значит СD параллельна АВ не просто как в плоскости ромба , а и как в плоскости треугольника. Значит у нас все сходится с признаком параллельности . Если СD (это какая-нибудь прямая вне плоскости) параллельна какой-нибудь прямой на данной плоскости (имеется ввиду плоскость треугольника ) , то СD параллельна САМОЙ ПЛОСКОСТИ . Доказано!
P.S. Если внимательно все прочитать , то все поймешь :D