1. Прежде заметим, что AB = CD = 3√2; AD = BC = 5; (рисунок) ∠A = ∠C = 45°; ∠B = ∠D = 180° - 45° = 135° (Свойства параллелограмма)
а) AD · AB = BC · AB = |BC| · |AB| · cos ∠A = 5 · 3√2 · cos 45° = 15√2 · √2 / 2 = 15
б) BA · BC = |BA| · |BC| · cos ∠B = 3√2 · 5 · cos 135° = -15√2 · √2/2 = -15
в) AD · BH = 0, так как AD ⊥ BH
2. m*n=3*(-2)+(-2)*3=-6-6=-12
4.Векторы перпендикулярны, если их скалярное произведение равно 0
ab=0
{2;-3}*{x;-4}=0;
2*x+(-3)*(-4)=0;
2x+12=0;
x+6=0;
x=-6
5.1) Найдем длины сторон: АВ=sqrt((0-3)^2+(6
9)^2)=sqrt(9+9)=sqrt(18)=3*sqrt(2);
BC=sqrt((4-0)^2+(2-6)^2)=sqrt(16+16)=sqrt(32)=4*sqrt(2);
AC=sqrt((4-3)^2+(2-9)^2)=sqrt(1+49)=sqrt(50)=5*sqrt(2).
2) Угол А образован сторонами АВ и АС. По теореме косинусов:
BC^2=AB^2+AC^2-2*AB*AC*cosA; => cosA=(AB^2+AC^2-BC^)/(2*AB*AC)=
=(18+50-32)/(2*3*sqrt(2)*5*sqrt(2))=36/60=3/5.
Объяснение:
Даны координаты вершины треугольника А(1,-2),В(2,4),С(0,1).
Определяем длины сторон по векторам.
АВ (c) BC (a) AС (b)
x y x y x y
1 6 -2 -3 -1 3
Длины сторон АВ = √(1+36) = √37 = 6,08276253
BC = √(4+9) = √13 = ,605551275
AC = √(1+9) = √10 = 3,16227766
Периметр Р = 12,85059147
Полупериметр р = 6,425295733
Площадь по Герону 4,5
Площадь можно найти по формуле, которая даёт результат прямо по координатам вершин треугольника.
S = (1/2)*|(x2-x1)*(y3-y1) - (x3-x1)*(y2-y1)|.
S = 0,5 *((* 3) - (-1* 6)) = 4,5.
1) угол АВС (можно обозначить просто угол В).
Углы по теореме косинусов
cos A = (b^2+c^2-a^2)/(2bc) 34/ 38,47076812 = 0,883787916
A = arccos 0,883787916 = 0,486899232 радиан 27,89727103 градуса
cos B = (a^2+c^2-b^2)/(2ac) 40 /43,863424 = 0,911921505
B = arccos 0,911921505 = 0,422853926 радиан 24,22774532 градуса
cos C = (a^2+b^2-c^2)/(2ab) -14/22,8035085 = -0,613940614
C = arccos -0,613940614 = 2,231839496 радиан 127,8749837 градуса
Сумма 180.
2)Площадь треугольника АВС дана выше.
1. Прежде заметим, что AB = CD = 3√2; AD = BC = 5; (рисунок) ∠A = ∠C = 45°; ∠B = ∠D = 180° - 45° = 135° (Свойства параллелограмма)
а) AD · AB = BC · AB = |BC| · |AB| · cos ∠A = 5 · 3√2 · cos 45° = 15√2 · √2 / 2 = 15
б) BA · BC = |BA| · |BC| · cos ∠B = 3√2 · 5 · cos 135° = -15√2 · √2/2 = -15
в) AD · BH = 0, так как AD ⊥ BH
2. m*n=3*(-2)+(-2)*3=-6-6=-12
4.Векторы перпендикулярны, если их скалярное произведение равно 0
ab=0
{2;-3}*{x;-4}=0;
2*x+(-3)*(-4)=0;
2x+12=0;
x+6=0;
x=-6
5.1) Найдем длины сторон: АВ=sqrt((0-3)^2+(6
9)^2)=sqrt(9+9)=sqrt(18)=3*sqrt(2);
BC=sqrt((4-0)^2+(2-6)^2)=sqrt(16+16)=sqrt(32)=4*sqrt(2);
AC=sqrt((4-3)^2+(2-9)^2)=sqrt(1+49)=sqrt(50)=5*sqrt(2).
2) Угол А образован сторонами АВ и АС. По теореме косинусов:
BC^2=AB^2+AC^2-2*AB*AC*cosA; => cosA=(AB^2+AC^2-BC^)/(2*AB*AC)=
=(18+50-32)/(2*3*sqrt(2)*5*sqrt(2))=36/60=3/5.
Объяснение:
Даны координаты вершины треугольника А(1,-2),В(2,4),С(0,1).
Определяем длины сторон по векторам.
АВ (c) BC (a) AС (b)
x y x y x y
1 6 -2 -3 -1 3
Длины сторон АВ = √(1+36) = √37 = 6,08276253
BC = √(4+9) = √13 = ,605551275
AC = √(1+9) = √10 = 3,16227766
Периметр Р = 12,85059147
Полупериметр р = 6,425295733
Площадь по Герону 4,5
Площадь можно найти по формуле, которая даёт результат прямо по координатам вершин треугольника.
S = (1/2)*|(x2-x1)*(y3-y1) - (x3-x1)*(y2-y1)|.
S = 0,5 *((* 3) - (-1* 6)) = 4,5.
1) угол АВС (можно обозначить просто угол В).
Углы по теореме косинусов
cos A = (b^2+c^2-a^2)/(2bc) 34/ 38,47076812 = 0,883787916
A = arccos 0,883787916 = 0,486899232 радиан 27,89727103 градуса
cos B = (a^2+c^2-b^2)/(2ac) 40 /43,863424 = 0,911921505
B = arccos 0,911921505 = 0,422853926 радиан 24,22774532 градуса
cos C = (a^2+b^2-c^2)/(2ab) -14/22,8035085 = -0,613940614
C = arccos -0,613940614 = 2,231839496 радиан 127,8749837 градуса
Сумма 180.
2)Площадь треугольника АВС дана выше.