1 из трех точек, не лежащих на одной прямой, и трёх отрезков, их соединяющих
2 отрезок, соединяющий эту вершину с серединой противолежащей стороны
3 только три медианы
4 сумма длин всех его сторон
5 высота, проведённая к основанию является биссектрисой и медианой
6 перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону
7 все его стороны равны
8 Медиана равнобедренного треугольника, проведённая к его боковой стороне, является биссектрисой и высотой
9 всегда верно
Объяснение:
Даны вершины А(-2; 1), В(1; 4), С(5; 0) i D(2; -3).
Фигура АВСД прямоугольник, если стороны попарно равны и диагонали равны.
Длины сторон.
AB = √((xB-xA)² + (yB-yA)²) = √18 = 4,242640687
BC = √((xC-xB)² + (yC-yB)²) = √32 = 5,656854249
CD = √((xD-xC)² + (yD-yC)²) = √18 = 4,242640687
AD = √((xC-xA)² + (yC-yA)²) = √32 = 5,656854249 .
Длины диагоналей.
AC = √((xC-xA)² + (yC-yA)²) = √50 = 7,071067812
BD = √((xD-xB)² + (yD-yB)²) = √50 = 7,071067812 .
Как видим, эти свойства подтверждены, АВСД - прямоугольник.
1 из трех точек, не лежащих на одной прямой, и трёх отрезков, их соединяющих
2 отрезок, соединяющий эту вершину с серединой противолежащей стороны
3 только три медианы
4 сумма длин всех его сторон
5 высота, проведённая к основанию является биссектрисой и медианой
6 перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону
7 все его стороны равны
8 Медиана равнобедренного треугольника, проведённая к его боковой стороне, является биссектрисой и высотой
9 всегда верно
Объяснение:
Даны вершины А(-2; 1), В(1; 4), С(5; 0) i D(2; -3).
Фигура АВСД прямоугольник, если стороны попарно равны и диагонали равны.
Длины сторон.
AB = √((xB-xA)² + (yB-yA)²) = √18 = 4,242640687
BC = √((xC-xB)² + (yC-yB)²) = √32 = 5,656854249
CD = √((xD-xC)² + (yD-yC)²) = √18 = 4,242640687
AD = √((xC-xA)² + (yC-yA)²) = √32 = 5,656854249 .
Длины диагоналей.
AC = √((xC-xA)² + (yC-yA)²) = √50 = 7,071067812
BD = √((xD-xB)² + (yD-yB)²) = √50 = 7,071067812 .
Как видим, эти свойства подтверждены, АВСД - прямоугольник.