Пусть в тр-ках авс и а (1)в (1)с (1) 1) равны медианы вк и в (1)к (1) , 2) угол авк =углу а (1)в (1)к (1) 3) угол свк = углу с (1)в (1)к (1) доказать, что тр-к авс = тр-ку а (1)в (1)с (1) доказательство в тр-ке авс продолжим медиану вк и отложим км =вк и точку м соединим с точками а и с аналогичные построения сделаем в тр-ке а (1)в (1)с (1), тогда вм =в (1)м (1) 1) тр-к акв =тр-ку скм ( по двум сторонам вк=км и ак=кс и углу между ними -они вертикальные) 2) аналогично тр-к а (1)к (1)в (1) =тр-ку с (1)к (1)м (1) отсюда следует 3) ав=мс =а (1)в (1) =м (1)с (1), < авм = < вмс =< а (1)в (1)м (1) = < в (1)м (1)с (1) 4) тогда тр-к всм = тр-ку в (1)с (1)м (1) по стороне вм =в (1)м (1) и двум прилежащим углам 5) отсюда вс =в (1)с (1) и ав=мс =а (1)в (1) =м (1)с (1), 6) проэтому тр-к авс = тр-ку а (1)в (1)с (1) по двум сторонам и углу между ними второй способ состоит в том, что по теореме " площадь тр-ка равна половине произведения двух сторон на синус угла между ними выражают стороны ав и вс через медиану вк и углы авк и свк применяя соотношение s (авс) = s (авк) + s (свк) и доказывают, что ав= а (1)в (1) и вс= в (1)с (1)
Окружность проведена через А, следовательно, А лежит на окружности.
АВ и АD - равные стороны вписанного угла ВАD, поэтому его биссектриса АС проходит через центр окружности и является её диаметром .
∠АВС=∠АDC=90°- опираются на диаметр.
Треугольники АВС и АBD равны по катету и гипотенузе, поэтому площадь каждого равна половине площади четырехугольника АВСD - равна 1,5√3
Площадь прямоугольного треугольника равна половине произведения его катетов.
S ∆ АВС=АВ•BC:2
BC=2S:AB=3√3):3=√3
ВС:АВ=tg∠ВАС
tg∠BAC=√3):3=1:√3. Это тангенс угла 30°.
Тогда, так как ∠ВАС=∠DAC, угол ВАD=60°
* * *
Если А - центр окружности, результат будет тот же, но решение немного другим Тогда АВ=АС=AD=R
AB+AD=6 AB=AD=AC=6:2=3⇒ R=3
АС - биссектриса. ∠ВАС=∠DAC⇒∆ ABC=∆ ADC по 1 признаку равенства треугольников.
S∆ ВАС=S∆DAC= S ABCD:2
sin BAC=2•SBAC:AB²⇒
sin BAC=3√3):9=√3:3=1/√3 - это синус 30°
Тогда, т.к. АС биссектриса, угол ВАD=60° Это ответ.
----------