В прямоугольном треугольнике АВС с прямым углом С известно, что АВ - 33,8, ВС - 31,2. Найдите, в каком отношении биссектриса треугольника AD делит высоту СН.
Опять треугольники не подобны. Самая большая сторона в треугольнике АВС это АВ=10 см, Самая большая сторона в треугольнике А₁В₁С₁ это А₁В₁=15 см. Их отношения равны А₁В₁:АВ=15:10=1,5 Самая маленькая сторона в треугольнике АВС это ВС=5 см. Самая маленькая сторона треугольнике А₁В₁С₁ это В₁С₁=7,5 см. Их отношения равны В₁С₁:ВС=7,5:5=1,5 Отношения совпадают.
Остаются отношения средних сторон. Средняя сторона в треугольнике АВС это АС=7 см, Средняя сторона в треугольнике А₁В₁С₁ это А₁С₁=9,5 см, Их отношения равны А₁С₁:АС=9,5:7=1,(3571428) Получается, что отношения этих сторон не соответствуют другим отношениям сторон.
Найдем ВС. По свойству медианы, проведенной к гипотенузе, ВС=2АМ=15*2=30 см.
ВМ=СМ=30:2=15 см.
Из прямоугольного треугольника АМН найдем МН.
МН=√(АМ²-МН²)=√(225-144)=√81=9 см.
НС=МС-МН=15-9=6 см.
Из треугольника АНС найдем АС:
АС=√(АН²+СН²)=√(144+36)=√180=6√5 см.
Найдем АВ:
АВ²=ВС²-АС²=900-180=720; АВ=√720=12√5 см.
sin A=sin 90°=1
sin B=AC\BC=6√5\30=√5\5
sin C=AB\BC=12√5\30=2√5\5
ответы: 30 см; 6√5 см; 12√5 см; 1; √5\5; 2√5\5.
Самая большая сторона в треугольнике АВС это АВ=10 см,
Самая большая сторона в треугольнике А₁В₁С₁ это А₁В₁=15 см.
Их отношения равны А₁В₁:АВ=15:10=1,5
Самая маленькая сторона в треугольнике АВС это ВС=5 см.
Самая маленькая сторона треугольнике А₁В₁С₁ это В₁С₁=7,5 см.
Их отношения равны В₁С₁:ВС=7,5:5=1,5
Отношения совпадают.
Остаются отношения средних сторон.
Средняя сторона в треугольнике АВС это АС=7 см,
Средняя сторона в треугольнике А₁В₁С₁ это А₁С₁=9,5 см,
Их отношения равны А₁С₁:АС=9,5:7=1,(3571428)
Получается, что отношения этих сторон не соответствуют другим отношениям сторон.
ответ: треугольники не подобны.