В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
zzzXXXD
zzzXXXD
10.06.2022 05:15 •  Геометрия

В прямоугольном треугольнике ABC с прямым углом B проведена высота BH,медиана BM и бессектриса Оказалось, что угол CBM =29градусам.найдите: А)угол LBM
Б)Угол ABH

Показать ответ
Ответ:
2899101714lp
2899101714lp
21.05.2022 23:05
Попробуем координатный метод
стартуем в начале координат, от него вправо сторона длиной 15, вправо вверх сторона 14, И из точки (15;0) влево вверх сторона 13
Координата третей вершины найдётся из системы
x^2+y^2=14^2
(x-15)^2+y^2=13^2
вычтем из второго первое
x^2 + y^2 = 196
x^2 + y^2 - 30 x = -56
-----------
30х = 252
x = 42/5
y^2 = 196 - (42/5)^2 = 3136/25
y = +- 56/5, отрицательный корень нам не нужен
y = 56/5
Итак, три вершины
А(0;0) В(15;0) С(8.4;11.2)
---------------------------------
начнём с медиан.
медиана из вершины А пересекает сторону ВС в точке
1/2((15;0)+(8.4;11.2)) = (11.7;5.6)
уравнение этой медианы
y = 5.6/11.7 x
медиана из вершины В  пересекает сторону АС в точке
1/2((0;0)+(8.4;11.2)) = (4.2;5.6)
y=kx+b
5.6=4.2k+b
0=15k+b
k = -14/27
b = 70/9
y=-14/27x+70/9
и точка пересечения медиан найдётся из решения системы
y = 5.6/11.7x 
y=-14/27x+70/9
-------------
x = 39/5
y = 56/15
Точка пересечения медиан 
М(39/5;56/15)
--------------------------------------
теперь высоты
Проще всего с вертикальной. Её уравнение x=8.4
Уравнение прямой ВС
В(15;0) С(8.4;11.2)
y=kx+b
11.2=8.4k+b
0=15k+b
k = -56/33
b = 280/11
y = -56/33x + 280/11
собственно, нам b не нужно, а нужен угловой коэффициент для построения перпендикуляра к стороне BC
В уравнении перпендикуляра угловой коэффициент будет равен
k₁ = -1/k = 33/56
а b₁ равен 0, т.к. высота исходит из начала координат
y = 33/56x
x = 8.4
решение 
x = 42/5, y = 99/20
Это координаты точки пересечения высот
H(42/5;99/20)
--------------------------------------------------------------
теперь биссектрисы
Уравнение стороны АС
y=11.2/8.4x=4/3x
координата точки на расстоянии 1 от начала координат будет 
y^2+x^2=1^2
16/9x^2+x^2 = 1
x=+-3/5, отрицательный корень не нужен
x=3/5
y=4/5
Единичный вектор по стороне АВ будет иметь координаты (1;0)
среднее арифметическое между последними двумя точками, т.е. точка, принадлежащая биссектрисе
1/2((3/5;4/5)+(1;0)) = 1/2(8/5;4/5) = (4/5;2/5)
Уравнение биссектрисы из точки А 
y=1/2x
Уравнение прямой ВС было в пункте
y = -56/33x + 280/11
единичный вектор от точки В(15;0) к точке С(8.4;11.2)
y^2+(x-15)^2=1^2
(-56/33x + 280/11)^2+(x-15)^2=1
(4225 (x - 15)^2)/1089 = 1
два решения 
x₁ = 942/65
x₂ = 1008/65 - второй корень, от точки С, нам не нужен
x = 942/65
y = -56/33x + 280/11 =  -56/33*942/65 + 280/11 = 56/65
Единичный вектор от В к С
(942/65;56/65)
Единичный вектор от В к A
(14;0)
Их среднее арифметическое
(926/65;28/65)
Это вторая точка биссектрисы из угла В(15;0)
28/65=k926/65+b
0=15k+b
k = -4/7
b = 60/7
y = -4/7x + 60/7
решаем совместно с 
y=1/2x
точка пересечения
x = 8
y = 4
И это точка пересечения биссектрис
L(8;4)
-------------------
М(39/5;56/15)
H(42/5;99/20)
L(8;4)
Площадь треугольника найдём через координаты, хотя возможны и другие методы
S = \frac{1}{2} * det \left[\begin{array}{cc} x_{1}-x_{3}&y_{1}-y_{3}\\x_{2}-x_{3}&y_{2}-y_{3}\end{array}\right] =\\ =\frac{1}{2} ((x_{1}-x_{3})(y_{2}-y_{3})-(y_{1}-y_{3})(x_{2}-x_{3}))
S=((39/5-8)(99/20-4)-(56/15-4)(42/5-8))/2 = -1/24
0,0(0 оценок)
Ответ:
dilnaz61
dilnaz61
15.09.2021 12:47

) Пусть АН - высота треугольника, она же ось симметрии.

Так как вершина А лежит на оси симметрии, она отобразится в себя (т.е. точка А' совпадет с А).

Чтобы отобразить точку В относительно оси АН, надо построить из точки В луч, перпендикулярный АН, а это и есть прямая ВС.

Затем на луче ВН откладываем отрезок НВ', равный ВН, по другую сторону от точки Н.

На луче СН по другую сторону от точки Н откладываем отрезок НС', равный СН.

ΔA'B'C' - искомый.

б) Пусть D - середина АВ.

Проводим луч CD, на котором откладываем отрезок CA' = CD.

На луче AD откладываем отрезок DA' = AD. Так как D - середина АВ, точка A' совпадет с точкой В.

На луче BD откладываем отрезок DB' = BD. Так как D - середина АВ, точка В' совпадет с точкой А.

ΔA'B'C' - искомый.

в) М - точка пересечения медиан треугольника АВС.

Из вершин А, В и С проводим лучи, параллельные АМ. На них откладываем отрезки AA', BB' и CC', равные длине отрезка АМ.

При этом точка А' совпадет с точкой М.

ΔA'B'C' - искомый.

г) Так как С - центр поворота, то точка С отобразится на себя.

Строим окружность с центром в точке С и радиусом ВС.

Строим угол, равный 45° с вершиной в точке С и стороной ВС (против часовой стрелки). Точка пересечения окружности и второй стороны угла - точка В'.

Строим окружность с центром в точке С и радиусом АС.

Строим угол, равный 45° с вершиной в точке С и стороной АС (против часовой стрелки). Точка пересечения окружности и второй стороны угла - точка А'.

ΔA'B'C' - искомый

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота