1) (рис 1) Формулы деления отрезка в данном отношении ∧ (∧-лямда ∧=АМ/МВ=1/2) х(м)=(х(а)+∧х(в))/(∧+1) х(м)=(-2+1/2*4)/1+1/2=(-2+2)/(3/2)=0 у(м)=(у(а)+∧у(в))/(∧+1) у(м)=(5+1/2*(-3))/1+1/2=(5-3/2)/(3/2)=7/2*2/3=7/3 М(0;7/3) 2) Если точка М принадлежит прямой АВ, то возможны 2 варианта: первый рассмотрен под цифрой 1), а второй т.А будет серединой отрезка МВ, тогда х(м) и у(м) можно найти из формул середины отрезка х(а)=х(м)+х(в)/2 -2=(х(м)+4)/2 х(м)=(-2*2)-4=-8 у(а)=у(м)+у(в)/2 5=(у(м)-3)/2 у(м)=5*2+3=13 М(-8;13) 3)(х(м)-х(а))²+(у(м)-у(а))²=100 и (х(м)-х(в))²+(у(м)-у(в))²=100 для удобства заменим х(м) на х, а у(м) на у, получим уравнения (х+2)²+(у-5)²=100 х²+4х+4+у²-10у+25=100 (х-4)²+(у+3)²=100 х²-8х+14+у²+6у+9=100 вычтем уравнения 12х-16у+16=0 3х-4у=-4 у=3/4х+1 подставим в первое уравнение (х+2)²+(3/4х-4)²=100 х²+4х+4+9/16х²-6х+16=100 25/16х²-2х-80=0 Д1=1+25/16*80=1+25*5=126=3√14 х1=(1+3√14)/(25/16)=16(1+3√14)/25 и х2=16(1-3√14)/25 у1=3/4*16*(1+3√14)/25+1=12(1+3√14)/25+1=(37+36√14)/25 у2=3/4*16*(1-3√14)/25+1=(37-36√14)/25
1. Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1. S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r. значит можно. 2. Не может. k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ . Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂. CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃. DB =BE ⇒k₂ =2k₁ ; EC =CF ⇒k₃ =2k₂ =4k₁ . AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁ ⇒ AB+BC< AC ,что невозможно.
Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂. DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
х(м)=(х(а)+∧х(в))/(∧+1) х(м)=(-2+1/2*4)/1+1/2=(-2+2)/(3/2)=0
у(м)=(у(а)+∧у(в))/(∧+1) у(м)=(5+1/2*(-3))/1+1/2=(5-3/2)/(3/2)=7/2*2/3=7/3
М(0;7/3)
2) Если точка М принадлежит прямой АВ, то возможны 2 варианта: первый рассмотрен под цифрой 1), а второй т.А будет серединой отрезка МВ, тогда х(м) и у(м) можно найти из формул середины отрезка
х(а)=х(м)+х(в)/2 -2=(х(м)+4)/2 х(м)=(-2*2)-4=-8
у(а)=у(м)+у(в)/2 5=(у(м)-3)/2 у(м)=5*2+3=13
М(-8;13)
3)(х(м)-х(а))²+(у(м)-у(а))²=100 и (х(м)-х(в))²+(у(м)-у(в))²=100
для удобства заменим х(м) на х, а у(м) на у, получим уравнения
(х+2)²+(у-5)²=100 х²+4х+4+у²-10у+25=100
(х-4)²+(у+3)²=100 х²-8х+14+у²+6у+9=100
вычтем уравнения 12х-16у+16=0 3х-4у=-4 у=3/4х+1
подставим в первое уравнение (х+2)²+(3/4х-4)²=100
х²+4х+4+9/16х²-6х+16=100
25/16х²-2х-80=0
Д1=1+25/16*80=1+25*5=126=3√14
х1=(1+3√14)/(25/16)=16(1+3√14)/25 и х2=16(1-3√14)/25
у1=3/4*16*(1+3√14)/25+1=12(1+3√14)/25+1=(37+36√14)/25
у2=3/4*16*(1-3√14)/25+1=(37-36√14)/25
(16(1+3√14)/25;(37+36√14)/25) (16(1-3√14)/25;(37-36√14)/25)
4) (х-х(а))²+(у-у(а))²+(х-х(в))²+(у-у(в))²=50
(х+2)²+(у-5)²+(х-4)²+(у+3)²=50
х²+4х+4+у²-10у+25+х²-8х+16+у²+6у+9=50
2х²-4х+2у²-4у+54=50
х²-2х+1+у²-2у+1+25=25
(х-1)²+(у-1)²=0
точка М(1;1)
Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1.
S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r.
значит можно.
2. Не может.
k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ .
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂.
CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃.
DB =BE ⇒k₂ =2k₁ ;
EC =CF ⇒k₃ =2k₂ =4k₁ .
AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁
⇒ AB+BC< AC ,что невозможно.
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂.
DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.