. В прямоугольном треугольнике ABC (C = 90 °) BC = 4, ABC = 45 °. Рисуется круг так, чтобы центр находился в точке А. а) Для контакта окружности и прямой BC; б) так, чтобы окружность и линия ВС не имели общих точек; в) Каков радиус окружности, чтобы окружность и прямая BC имели две общие точки?
1. объемы до и после распила одинаковые
V=n*v
v=1/4a*1/4b*1/4c
2. тоже самое
3.Vтр призмы=Sтр основания*H
Плоскость, проходящая через средние линии будет параллельна боковой грани призмы, по паре параллельных прямых. Значит фигура бкдет разделена на две - треугольную призму и четырехугольную с трапецией в основании. Причем, высоты призм одинаковы и равны H.
Далее задача сводится к нахождению отношения оснований треугольной и трапецивидной призмы, а точнее отношению площадей их оснований - треугольника и трапеции.
Объяснение:
Пусть дан треугольник ABC,где угол А = 45 °. ВН-высота ;
АН = 6 (см) , НС = 10 (см). Найдём S треугольника.
Рассмотрим треугольник АВН : угол А = 45 ° (по условию), значит угол АВН = 45 °. Следовательно треугольник равнобедренный и АН = НС = 6 (см) ,найдём АС.
АС = АН + НС = 6 + 10 = 16 (см)
Рассмотрим ВН: в равнобедренному треугольнике высота, проведенная к основанию, является медианой и биссектрисой.
Найдём высоту по формуле ВН=1/2*АС.
ВН = 1/2 * 16 = 8 (см)
S тр. = S= 1/2 АС * ВН
S тр. = 1/2 * 16 * 8 = 64 (см)