1)начнем с того, что это равнобедренная трапеция. углы при основаниях равны. то есть угол а=в=(360-120*2)/2=60 градусов; d=c=120 градусов. 2)затем делаем дополнительные построения -высота dh и ck перпендикулярные ab, тогда ah=kb=14-8/2=3 3)теперь рассматриваем отдельно треугольник adh: уголahd=90(dh-высота) угол dah=60 сумма всех углов =180, тогда угол adh=180-90-60=30 4) рассмотрим опять этот треугольник угол adh=30 сторона ah=3, тогда ad=ah*2(катет прямоугольного треугольника лежащий против угла в 30 градусов равен половине гипотенузы) и получается, что ad=cb=6. отсюда - периметр равен сумме всех сторон, то есть 8+14+6+6=34
2. Так как соседние углы ромба в сумме дают 180° и диагонали ромба являются биссектрисами углов ромба, построим угол, который будет прилегать к заданной диагонали. Для этого к заданному углу построим смежный с линейки : ∠MBA (рис. 2) Произвольным радиусом сделаем засечки на сторонах полученного ∠MBA : точки N и T.
3. От точек N и T произвольным одинаковым радиусом провести полуокружности, на пересечении поставить точку F ( рис. 3). Луч BF - биссектриса угла ∠MBA. ∠MBF равен углу, который прилегает к заданной диагонали.
4. Провести прямую, отложить с циркуля длину отрезка AC - это диагональ будущего ромба (рис. 4). От концов диагонали радиусом NB провести полуокружности. На диагонали точки пересечения D и E.
5. Из точки D радиусом NF в сторону точки А провести полуокружность до пересечения с построенной полуокружностью : на пересечении точки G и H. Из точки E радиусом NF в сторону точки C провести полуокружность до пересечения с построенной полуокружностью : на пересечении точки K и L ( рис. 5).
6. Провести лучи AG, CK, AH, CL (рис. 6). На пересечении лучей поставить точки B и D. Полученная фигура ABCD - ромб с заданными параметрами.
2)затем делаем дополнительные построения -высота dh и ck перпендикулярные ab, тогда ah=kb=14-8/2=3
3)теперь рассматриваем отдельно треугольник adh:
уголahd=90(dh-высота)
угол dah=60
сумма всех углов =180, тогда угол adh=180-90-60=30
4) рассмотрим опять этот треугольник угол adh=30
сторона ah=3, тогда ad=ah*2(катет прямоугольного треугольника лежащий против угла в 30 градусов равен половине гипотенузы)
и получается, что ad=cb=6.
отсюда - периметр равен сумме всех сторон, то есть 8+14+6+6=34
1. Дана диагональ AC и ∠ABC (рис. 1)
2. Так как соседние углы ромба в сумме дают 180° и диагонали ромба являются биссектрисами углов ромба, построим угол, который будет прилегать к заданной диагонали. Для этого к заданному углу построим смежный с линейки : ∠MBA (рис. 2) Произвольным радиусом сделаем засечки на сторонах полученного ∠MBA : точки N и T.
3. От точек N и T произвольным одинаковым радиусом провести полуокружности, на пересечении поставить точку F ( рис. 3). Луч BF - биссектриса угла ∠MBA. ∠MBF равен углу, который прилегает к заданной диагонали.
4. Провести прямую, отложить с циркуля длину отрезка AC - это диагональ будущего ромба (рис. 4). От концов диагонали радиусом NB провести полуокружности. На диагонали точки пересечения D и E.
5. Из точки D радиусом NF в сторону точки А провести полуокружность до пересечения с построенной полуокружностью : на пересечении точки G и H. Из точки E радиусом NF в сторону точки C провести полуокружность до пересечения с построенной полуокружностью : на пересечении точки K и L ( рис. 5).
6. Провести лучи AG, CK, AH, CL (рис. 6). На пересечении лучей поставить точки B и D. Полученная фигура ABCD - ромб с заданными параметрами.