Нам известно, что прямая y = kx + b проходит через точки с координатами А(- 1; 3) и В(2; - 1). Исходя из этого мы составим и решим систему линейных уравнений. 3 = - 1 * k + b; - 1 = 2k + b. Решать систему будем методом подстановки. Выразим из первого уравнения системы переменную b. b = 3 + k; 2k + b = - 1. Подставляем во второе уравнение вместо b выражение 3 + k и решаем полученное линейное уравнение. b = 3 + k; 2k + 3 + k = - 1. 3k = - 1 - 3; 3k = - 4; k = - 4/3 = - 1 1/3. Система: b = 3 + ( - 1 1/3) = 5/3 = 1 2/3; k = - 1 1/3. Запишем уравнение прямой проходящей через заданные точки: у = - 1 1/3х + 1 2/3. ответ: у = - 1 1/3х + 1 2/3.
Исходя из этого мы составим и решим систему линейных уравнений.
3 = - 1 * k + b;
- 1 = 2k + b.
Решать систему будем методом подстановки. Выразим из первого уравнения системы переменную b.
b = 3 + k;
2k + b = - 1.
Подставляем во второе уравнение вместо b выражение 3 + k и решаем полученное линейное уравнение.
b = 3 + k;
2k + 3 + k = - 1.
3k = - 1 - 3;
3k = - 4;
k = - 4/3 = - 1 1/3.
Система:
b = 3 + ( - 1 1/3) = 5/3 = 1 2/3;
k = - 1 1/3.
Запишем уравнение прямой проходящей через заданные точки:
у = - 1 1/3х + 1 2/3.
ответ: у = - 1 1/3х + 1 2/3.
В задании, надо догадываться, требуется найти объём второй пирамиды.
Находим площадь основания АВС по формуле:
So = absin C = 12*18*sin 60° = 216*(√3/2) = 108√3 кв. ед.
Высота ho из точки А на ВС равна:
ho = 2So/BC = 2*108√3/12 = 18√3.
Так как сечение параллельно SA, то оно вертикально, поэтому высота второй пирамиды равна половине ho, то есть hп = 9√3.
Площадь сечения (а это прямоугольник со сторонами как средними линиями четырёх граней первой пирамиды) находим так:
Sп = (8√3/2)*(12/2) = 24√3 кв. ед.
Получаем ответ: Vп = (1/3)Sп*hп = (1/2)*24√3*9√3 = 216 куб. ед.