В прямом параллелепипеде боковое ребро равно 12 см, большая сторона основания 7 см, большая диагональ основания 9 см. Найдите площадь боковой поверхности параллелепипеда, если его большая диагональ образует с большей стороной основания угол с решением и рисунком.
по т. пифагора (квадрат гипотенузы равен сумме квадратов катетов)
с²=у²+х²
система
х-у=14
26²=у²+х²
из первого уравнения выразим х
х=14+у
подставим во второе
26²=у²+(14+у)²
676=у²+14²+2*14*у+у²
676=2у²+196+28у
676-2у²-196-28у=0
480-2у²-28у=0 (делим все на (-2))
у²+14у-240=0- это приведенное уравнение
по т.виета
y₁+y₂=-14
y₁*y₂=-240
y₁=-24 (не подходит, <0)
y₂=10 cm
подставим то, что у нас получилось в подстановку
х=14+10
х=24 cm
площадь (произведение катетов деленное на 2)
S=xy/2
S=24*10/2
S=120 cm²
1. Многоку́тник (багатоку́тник, поліго́н) — геометрична фігура, замкнена ламана (сама, або разом із точками, що лежать усередині).
2.
Сума довжин всіх сторін многокутника називається його периметром.
3.Діагоналями многокутника називаються відрізки, що з'єднують дві вершини многокутника, які не належать одній його стороні.
4.Многокутник називається опуклим , якщо він лежить в одній півплощині відносно будь-якої прямої, що містить його сторону
5.многокутник буде опуклим, якщо відносно будь-якої прямої, що проходить через сторону многокутника, многокутник повністю буде розташований в півплощині утвореній цією прямою (тобто по один бік від прямої).
6.Сума зовнішніх кутів опуклого n-кутника, взятих по одному при кожній вершині, дорівнює 360
7.
8.Центром є точка (прийнято позначати O) перетину серединних перпендикулярів до сторін многокутника. Центр описаного кола опуклого n-кутника лежить на точці перетину серединних перпендикулярів його сторін.
9.Це коло називається описаним навколо многокутника
10.Центр кола, вписаного в многокутник, є точкою перетину його бісектрис.