В правильной треугольной пирамиде SABC медианы основания пересекаются в точке К. Объем пирамиды равен 42см³, SK =18см. Найдите площадь треугольника АВС. Желательно с рисунком и пояснением
Если прямые I1 и I2 - касательные к соответствующим окружностям, то ∠ВАС равен половине дуги АС (большой окружности) по свойству угла между хордой и касательной. ∠ADC равен половине дуги АС (большой окружности) как вписанный, опирающийся на эту дугу. =>
∠АDC = ∠ВАC.
∠ACD равен половине дуги АС (малой окружности) по свойству угла между хордой и касательной. ∠AВC равен половине дуги АС (малой окружности) как вписанный, опирающийся на эту дугу. =>
∠АСD = ∠ABC.
В треугольнике ACD ∠CАD = 180 - ∠АСD - ∠ADC.
В треугольнике AВC ∠АСВ= 180 - ∠АBC - ∠BAC. =>
∠CАD = ∠АСВ. Это внутренние накрест лежащие углы про прямыхI3 и I4 и секущей АС => прямые I3 и I4 - параллельные, что и требовалось доказать.
★☆★ Чертёж смотрите во вложении ★☆★
Дано:Четырёхугольник ABCD — выпуклый.
Каждый угол четырёхугольника в 2 раза больше предыдущего.
Найти:Меньший угол четырёхугольника (∠А) = ?
Решение:▷ Сумма углов любого четырёхугольника равна 360° ◁
Для удобства расчёта возьмём ∠А за х.
Тогда, по условию задачи —
▸ ∠В = 2*∠А = 2х.
▸ ∠С = 2*∠В = 2*2х = 4х.
▸ ∠D = 2*∠C = 2*4x = 8x.
Логично, что ∠А — меньший угол, так как мы его брали за х.
Составим линейное уравнение и найдём значение х —
∠А+∠В+∠С+∠D = 360°
х+2х+4х+8х = 360°
15х = 360°
х = 24°.
∠А = х = 24°.
ответ:24°.
Доказательство в объяснении и приложении.
Объяснение:
Если прямые I1 и I2 - касательные к соответствующим окружностям, то ∠ВАС равен половине дуги АС (большой окружности) по свойству угла между хордой и касательной. ∠ADC равен половине дуги АС (большой окружности) как вписанный, опирающийся на эту дугу. =>
∠АDC = ∠ВАC.
∠ACD равен половине дуги АС (малой окружности) по свойству угла между хордой и касательной. ∠AВC равен половине дуги АС (малой окружности) как вписанный, опирающийся на эту дугу. =>
∠АСD = ∠ABC.
В треугольнике ACD ∠CАD = 180 - ∠АСD - ∠ADC.
В треугольнике AВC ∠АСВ= 180 - ∠АBC - ∠BAC. =>
∠CАD = ∠АСВ. Это внутренние накрест лежащие углы про прямыхI3 и I4 и секущей АС => прямые I3 и I4 - параллельные, что и требовалось доказать.