1 РЕШЕНИЕ рисунок прилагается В четырехугольной пирамиде SABCD все ребра равны,значит все боковые грани равносторонние треугольники Так как точка M -- середина ребра SC, то ВМ - медиана, биссектриса, высота в треугольнике BSC и ВМ -перпендикуляр к SC DМ - медиана, биссектриса, высота в треугольнике DSC и DМ -перпендикуляр к SC ТРИ точки B,D,M образуют плоскость BMD, в которой лежат пересекающиеся прямые (BM) и (DM). Так как (SC) перпендикулярна к каждой из прямых (BM) и (DM), следовательно плоскость BMD перпендикулярна прямой SC. ДОКАЗАНО. 2 РЕШЕНИЕ рисунок прилагается Так как АВ ⊥ ВС , то основание пирамиды - прямоугольный треугольник ABC площадь прямоугольного треугольника S(∆ABC)=1/2 АВ*ВС = 1/2 *10*15=75 Так как через точку М ребра SB проведено сечение плоскостью, параллельной плоскости АВС, то по теореме Фалеса эта плоскость делит боковые ребра пирамиды на пропорциональные отрезки таким образом, что: ∆ASB ~ ∆KSM ∆ASC ~ ∆KSN ∆BSC ~ ∆MSN подобные треугольники. Искомое сечение ∆KMN Причем если SM:MB=2:3 , то коэффициент подобия k = SM/SB = 3/5 В подобных треугольниках соответствующие стороны пропорциональны KM ~ AB KN ~ AC MN ~ BC тогда ∆KMN ~ ∆ABC с коэффициентом подобия k = 3/5 . Известно, что площади подобных треугольников относятся, как k^2 тогда S(∆KMN) = k^2 * S(∆ABC) = (3/5)^2 * 75 = 27 ответ S = 27
По Пифагору АD = √(АС²+СD²) = √(25+144) = 13. Тогда периметр равен 5+13+12=30. Площадь Sacd=0,5*AC*CD = 0,5*5*12 = 30. Радиус вписанной окружности равен r=√[(p-a)*(p-b)*(p-c)/p] = √(10*3*2)/15] = √4 = 2. (р - это полупериметр, a,b и с - стороны). Радиус описанной окружности равен половине гипотенузы АD = 6,5. Медиана,проведенная к гипотенузе, тоже равна половине этой гипотенузы, то есть 6,5. Ну и высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. то есть пары подобных треугольников это АСD и АОС, АCD и COD, АОС и СОD. P.S. Да, нужно, наверно, сказать, что подобие по первому признаку: острому углу, так как <A = <OCD, а <ACO=<ODС.
РЕШЕНИЕ
рисунок прилагается
В четырехугольной пирамиде SABCD все ребра равны,значит все боковые грани равносторонние треугольники
Так как точка M -- середина ребра SC, то
ВМ - медиана, биссектриса, высота в треугольнике BSC и
ВМ -перпендикуляр к SC
DМ - медиана, биссектриса, высота в треугольнике DSC и
DМ -перпендикуляр к SC
ТРИ точки B,D,M образуют плоскость BMD, в которой лежат пересекающиеся прямые (BM) и (DM).
Так как (SC) перпендикулярна к каждой из прямых (BM) и (DM),
следовательно плоскость BMD перпендикулярна прямой SC.
ДОКАЗАНО.
2
РЕШЕНИЕ
рисунок прилагается
Так как АВ ⊥ ВС , то основание пирамиды - прямоугольный треугольник ABC
площадь прямоугольного треугольника S(∆ABC)=1/2 АВ*ВС = 1/2 *10*15=75
Так как через точку М ребра SB проведено сечение плоскостью, параллельной плоскости АВС, то по теореме Фалеса эта плоскость делит боковые ребра пирамиды на пропорциональные отрезки таким образом, что:
∆ASB ~ ∆KSM
∆ASC ~ ∆KSN
∆BSC ~ ∆MSN
подобные треугольники.
Искомое сечение ∆KMN
Причем если SM:MB=2:3 , то коэффициент подобия k = SM/SB = 3/5
В подобных треугольниках соответствующие стороны пропорциональны
KM ~ AB
KN ~ AC
MN ~ BC
тогда ∆KMN ~ ∆ABC с коэффициентом подобия k = 3/5 .
Известно, что площади подобных треугольников относятся, как k^2 тогда
S(∆KMN) = k^2 * S(∆ABC) = (3/5)^2 * 75 = 27
ответ S = 27
Площадь Sacd=0,5*AC*CD = 0,5*5*12 = 30. Радиус вписанной окружности равен r=√[(p-a)*(p-b)*(p-c)/p] = √(10*3*2)/15] = √4 = 2. (р - это полупериметр, a,b и с - стороны). Радиус описанной окружности равен половине гипотенузы АD = 6,5. Медиана,проведенная к гипотенузе, тоже равна половине этой гипотенузы, то есть 6,5. Ну и высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. то есть пары подобных треугольников это АСD и АОС, АCD и COD, АОС и СОD.
P.S. Да, нужно, наверно, сказать, что подобие по первому признаку: острому углу, так как <A = <OCD, а <ACO=<ODС.