В правильном треугольнике АВС биссектрисы AD, BF и CE пересекаются в точке О. При повороте с центром в точке О точка F отображается на точку D. Тогда угол поворота равен
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Объяснение:
(4)
по теореме Пифагора
х=√(4²+5²)=√41
(5)
по теореме Пифагора
х=√(8²+7²)=√113
(6)
a=√(x²+h²) //h - это высота треугольника
a²=x²+h²
==> x<a
(7)
x=√(a²+h²) //h - это высота треугольника
x>a
(8)
Найдем сначала AB.
AB=√(6²-4²)=√20 //по теореме Пифагора
AD=Половина AB=(√20)/2=√(20/4)=√5
x=√(6²-AD²)=√(6²-√5²)=√(36-5)=√31
(9)
x=√(1.6-0.6)=√(2.56-0.36)=√2.2
(10)
т.к. треугольник ABC равнобедренный, его боковые стороны равны
т.е. AB=BC
==> AB=7
(11)
т.к. треугольник ABC равнобедренный, его боковые стороны равны
т.е. AB=AC
AB=7
(12)
т.к. треугольник ABC равнобедренный, его боковые стороны равны
т.е. AB=BC
AB=4
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
О нас