В параллелограмме АВСD на сторонах ВС и СD взяты соответственно точки М и N так, что М - середина ВС, СN:ND = 1:3. Выразите векторы АМ, AN и MN через векторы х = АВ и у С рисунком, если можно
Полуплоскость в математике — множество точек плоскости, лежащих по одну сторону от некоторой прямой на этой плоскости. Координаты точек полуплоскости удовлетворяют неравенству: Ах + By + С > 0, где А, В, С — некоторые постоянные, причём А и В одновременно не равны нулю. Если сама прямая Ax + By + С = 0 (граница полуплоскости) причисляется к этой полуплоскости, то такую полуплоскость называют замкнутой. На комплексной плоскости z = х + iy рассматриваются: верхняя полуплоскость у = Im z > 0.
Треугольник, образованный высотой, образующей и половиной диаметра - прямоугольный. Угол при вершине (90-60)=30° ⇒ половина диаметра (катет против угла 30°) равен половине образующей (гипотенуза). По т. Пифагора -
(2х)²=8²+х²
х²=8²/3
х=8/√3;
Площадь - S=a*h/2, где а=2х=16/√3, h=8;
S=16*8/(2√3)=64/√3=64√3/3.
Можно проще.
Угол при основании 60° ⇒ треугольник равносторонний.
Объяснение:
Осевое сечение конуса - равнобедренный треугольник с боковыми сторонами (образующие конуса), основание - диаметр основания.
Треугольник, образованный высотой, образующей и половиной диаметра - прямоугольный. Угол при вершине (90-60)=30° ⇒ половина диаметра (катет против угла 30°) равен половине образующей (гипотенуза). По т. Пифагора -
(2х)²=8²+х²
х²=8²/3
х=8/√3;
Площадь - S=a*h/2, где а=2х=16/√3, h=8;
S=16*8/(2√3)=64/√3=64√3/3.
Можно проще.
Угол при основании 60° ⇒ треугольник равносторонний.
S=h²/√3=8²/√3=64/√3=64√3/3.