СМ- медиана прямоугольного треугольника и равна половине его гипотенузы.
Через медиану в треугольнике образовались два равнобедренных треугольника Δ АМС и Δ СМВ, высоты МО и МР которых являются проекциями наклонных КО и КР. Эти наклонные и есть расстояние от К до катетов треугольника.
Гипотенузу АВ найдем по теореме Пифагора: АВ²=АВ²+СВ²=208
медиана МС=АМ=МВ
МО²=(АВ:2)²-АО²
МО²=(√208:2)²-4²
МО²= 208:4 -16=36 МО=6
Расстояние от К до О находим по теореме Пифагора, хотя и без вычислений ясно,что гипотенуза прямоугольного треугольника с катетами 6 и 8 равна 10. КО=10
Проекцию МР наклонной КР найдем по теореме Пифагора:
МР²=(АВ:2)²-ВР²
МР²=(√208:2)²-6² МР²=208:4 -36=16 МР=4
Расстояние от К до Р находим по теореме Пифагора: КР²=КМ²+РМ² КР²=64+16=80
1) построим треугольник, нижний катет 3, боковой 4. Впишем окружность, проведем радиусы к катетам. Соединим вершину катета в 3 с центром окружности. Получатся два подобных треугольника: их катеты равны по радиусу, другие - неизвестны (будут равны), обозначим их за Х.
2) в пересчете получим, что нижний катет основного треугольника делится радиусом на 3-Х и Х, гипотенуза на Х и 5-Х (гипотенуза равна 5 - египетский треугольник), боковой катет - на 5-Х и 4-5+Х
3) составим уравнение Х-1=3-Х, откуда Х=2. подставим, получим, что у прямоугольника, образованного двумя радиусами к катетам основного треугольника и частями основных катетов, составляющих прямой угол, две соседние стороны образуют прямой угол + равны , значит это квадрат, значит радиус равен 1( стороны этого маленького треугольника равны 1)
СМ- медиана прямоугольного треугольника и равна половине его гипотенузы.
Через медиану в треугольнике образовались два равнобедренных треугольника
Δ АМС и Δ СМВ, высоты МО и МР которых являются проекциями наклонных КО и КР. Эти наклонные и есть расстояние от К до катетов треугольника.
Гипотенузу АВ найдем по теореме Пифагора:
АВ²=АВ²+СВ²=208
медиана МС=АМ=МВ
МО²=(АВ:2)²-АО²
МО²=(√208:2)²-4²
МО²= 208:4 -16=36
МО=6
Расстояние от К до О находим по теореме Пифагора, хотя и без вычислений ясно,что гипотенуза прямоугольного треугольника с катетами 6 и 8 равна 10.
КО=10
Проекцию МР наклонной КР найдем по теореме Пифагора:
МР²=(АВ:2)²-ВР²
МР²=(√208:2)²-6²
МР²=208:4 -36=16
МР=4
Расстояние от К до Р находим по теореме Пифагора:
КР²=КМ²+РМ²
КР²=64+16=80
КР=4√5
ответ: площадь равна пи (или просто п)
Объяснение:
1) построим треугольник, нижний катет 3, боковой 4. Впишем окружность, проведем радиусы к катетам. Соединим вершину катета в 3 с центром окружности. Получатся два подобных треугольника: их катеты равны по радиусу, другие - неизвестны (будут равны), обозначим их за Х.
2) в пересчете получим, что нижний катет основного треугольника делится радиусом на 3-Х и Х, гипотенуза на Х и 5-Х (гипотенуза равна 5 - египетский треугольник), боковой катет - на 5-Х и 4-5+Х
3) составим уравнение Х-1=3-Х, откуда Х=2. подставим, получим, что у прямоугольника, образованного двумя радиусами к катетам основного треугольника и частями основных катетов, составляющих прямой угол, две соседние стороны образуют прямой угол + равны , значит это квадрат, значит радиус равен 1( стороны этого маленького треугольника равны 1)
4) площадь окружности п*(r^2)=п*1=п