В параллелограмме ABCD диагональ BD больше диагонали
A. На диагонали BD взяли такую точку K, что четырёхугольник
ABCK — вписанный. Докажите, что AC касается окружности,
описанной около △AKD и окружности, описанной около △KCD.
Подсказка. Попробуйте воспользоваться теоремой о квадрате
касательной «наоборот»: получите выражение этой теоремы
другими
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.
Пусть меньший из данных углов равен х, тогда больший равен 2х. Угол смежный с углом равным х, будет 7у, тогда угол смежный с углом равным 2х, будет 5у.
Смежные углы в сумме равны 180°, тогда получим систему:
Знак системы:
х+7у=180
2х=5у=180
Система:
х=180–7у (Ур 1)
2х+5у=180 (Ур 2)
Подставим значение х из уравнения 1 в уравнение 2, получим:
2(180–7у)+5у=180
360–14у+5у=180
360–180=–5у+14у
9у=180
у=20
Подставим значение у в уравнение 1, получим:
х=180–7*20
х=40
Тогда наменьший из данных углов равен 40°, а другой 40°*2=80°
ответ: 40° и 80°