В окружности с цетром в точке о к хорде ав,равной радиусу окружности перпендикулярно проведен диаметр cd. диаметр cd и хорда ав пресекаются в точке g. длина отрезка AG равна 6 см.
а) постройте русинок по условию
б)опредилите длину хорды АВ
с) определите длину диаметра CD
d)найдите периметр треугольника OAB.
Даны точки A (-10;3), B (2;9), C (3;7).
Запишите уравнение окружности, описанной около треугольника ABC.
Объяснение:
1)Найдем длины сторон ( вдруг треугольник равносторонний).
АВ=√( (2+10)²+(9-3)²)=√180 ,
ВС=√( (3-2)²+(7-9)²)=√(1+4)=√5 ,
АС=√( (3+10)²+(7-3)²)=√(169+16)=√185. Наибольшая сторона АС.
Проверим т. обратную теореме Пифагора :
АС²=(√185)²=185 и АВ²+ВС²=(√180)²+(√5)²=180+5=185. Ура
185=185⇒ΔАВС-прямоугольный , с гипотенузой АВ.
2)Центр О(х;у) описанной окружности около прямоугольного треугольника лежит на середине гипотенузы. Найдем координаты О
х(О)=( (х(А)+х(В) ):2 , х(О)=(-10+2):2=-4,
у(О)=( (у(А)+у(В) ):2 , у(О)=(3+9):2=6, центр О(-4;6).
Радиус окружности r=1/2*AB , r=1/2*√185.
3) (x +4)²+ (y – 6)² = (1/2*√185)² , (x +4)²+ (y – 6)² = 46,25
Теорема , обратная теореме Пифагора " Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такой треугольник прямоугольный."
Уравнение окружности (x – х₀)²+ (y – у₀)² = R² , где (х₀; у₀)-координаты центра.
1) кг
2) литры
3) Свойства объемов тел
Объем тела есть неотрицательное число;
Если геометрическое тело составлено из геометрических тел, не имеющих общих внутренних точек, то объем данного тела равен сумме объемов тел его составляющих;
Объем куба, ребро которого равно единице измерения длины, равен единице;
Равные геометрические тела имеют равные объемы.
4)Две фигуры называются на плоскости (в пространстве) называются равновеликими, если их площади (объемы) равны. * Любые две простые равновеликие фигуры на плоскости (в том числе, например, равновеликие многоугольники) равносоставлены.
5)Две фигуры и называются подобными, если существует подобие, переводящее одну из них в другую. Подобием называется преобразование пространства, при котором расстояния между точками изменяются в одно и то же число раз
6) Две фигуры называются подобными, если они переводятся одна в другую преобразованием подобия. ... Подобием называется преобразование пространства, при котором расстояния между точками умножаются на одно и то же положительное число
7) Для подобных фигур на плоскости, имеющих площадь, верна теорема: отношение площадей подобных фигур равно квадрату коэффициента подобия. Для подобных пространственных тел, имеющих объем, верна аналогичная теорема: отношение объемов подобных тел равно кубу коэффициента подобия.
8) цилиндр, конус