В окружности с центром в точке О проведен диаметр СК=18 см и хорда АВ, перпендикулярная СК и равная радиусу данной окружности. Диаметр СК и хорда АВ пересекаются в точке Р.
a) выполните чертеж по условию задачи;
b) найдите радиус окружности; [4]
c) найдите длину отрезка АР;
d) вычислите периметр треугольника АОВ
Проведем из вершины В треугольника АВС высоту ВН к основанию АС.
Так как, по условию, АВ = ВС, то треугольник АВС равнобедренный, а высота ВН в равнобедренном треугольника, так же является и медианой. Тогда АД = СД = АС / 2 = 12 / 2 = 6 см.
Рассмотрим прямоугольный треугольник АВД, и по теореме Пифагора определим длину катета ВН.
ВН2 = АВ2 – АД2 = 100 – 36 = 64.
ВН = 8 см.
Рассмотрим треугольный треугольник ДВН и по теореме Пифагора определим длину гипотенузы ДН.
ДН2 = ДВ2 + ВН2 = 152 + 82 = 225 + 64 = 289.
ДН = 17 см.
ответ: Расстояние от точки Д до прямой АС равно 17 см.
3,5√3
Объяснение:
т.к. угол между диагональю и меньшей стороной равен 60 градусам, то угол между диагональю и большей стороной равен 30 градусам => меньшая сторона равна половине диагонали (как катет, лежащий против угла равного 30 градусам в прямоугольном треугольнике)
7√3 : 2 = 3,5√3
т.к. в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов, то квадрат диагонали равен сумме квадратов сторон; обозначим неизвестную сторону "х"
10,5^2 + х^2 = (7√3)^2
110,25 + х^2 = 147
х^2 = 147 - 110,25 = 36,75
х = √36,75 = 3,5√3
проверка: 3,5√3 = √3,5^2*3 = √12,25*3 = √36,75