Диагонали трапеции делят ее на 4 треугольника. Треугольники, прилегающие к основаниям трапеции, подобны по первому признаку подобия: "Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны", т.к <CAD=<ACB, а <BDA=<DBC как внутренние накрест лежащие при параллельных прямых AD и ВС и секущих АС и ВD соответственно. Итак, треугольники АОD и СОВ подобны с коэффициентом подобия ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7. ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.
1)там есть две пары вертикальных углов,они равны, сумма всех углов 360°,значит сумма двух разных углов равна 180°,но один больше другого на 30,поэтому получается,что d+b=180°
b+30°+b=180°
2b=150°
b=75°
d=105°
2)b+d=180°
b=d+100°
2d=180°-100°
2d=80°
d=40°
b=140°
3)b+d=180°
b=8d
9d=180°
d=20°
b=(20°)*8=160°
4)см пункт 1,есть 2 пары вертикальных углов,они равны между собой
Итак, треугольники АОD и СОВ подобны с коэффициентом подобия
ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7.
ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.
1)75,75,105,105
2)40,140
3)20,160
4)80,100,80
5)10,10,170,170
Объяснение:
1)там есть две пары вертикальных углов,они равны, сумма всех углов 360°,значит сумма двух разных углов равна 180°,но один больше другого на 30,поэтому получается,что d+b=180°
b+30°+b=180°
2b=150°
b=75°
d=105°
2)b+d=180°
b=d+100°
2d=180°-100°
2d=80°
d=40°
b=140°
3)b+d=180°
b=8d
9d=180°
d=20°
b=(20°)*8=160°
4)см пункт 1,есть 2 пары вертикальных углов,они равны между собой
то есть 2 угла из 4 : 100°
сумма всех 360°
(360°-100°-100°)/2=80°
то есть углы:80°,100°,80°
5)b=x
d=17x
b+d=180°
17x+x=180°
18x=180°
x=10°
b=10°
d=170°