В координатной плоскости нарисуй четырёхугольник, вершинами которого являются точки:
A(15; 5), B(5; −15), C(−15; −5) и D(−5; 15).
Построй четырёхугольник A1B1C1D1, симметричный данному относительно начала координат.
Назови координаты вершин четырёхугольника A1B1C1D1:
A1(; );
B1(; );
C1(; );
D1(; ).
1)
В равнобедренном треугольнике боковые стороны равны, также как и углы при основании, зная, что сумма углов в треугольнике равна 180 градусов, составим и решим уравнение:
2x=180-52
2x=128
x=64 - угол при основании
ответ: углы при основании равны 64 градуса
2) Найти градусную меру угла DCE, зная, что FEC=105 градусов. Зная, что сумма соответсвенных углов равна 180*, найдем DCE:
DCE=180-105=75
ответ: DCE=75*
3) Для начал найдем угл ADE
ADE=180-(28+10)=180-38=142
DCB=180-142=38*
Cумма углов в треугольнике равна 180, значит угол
C=180-(72+38)=70*
ответ: C=70*
Больше 3 не решу, так как правила знаний запрещает выкладывать более 3 вопросов
2. Сформулируйте теоремы, обратные к приведенным ниже. Проверьте, будет
ли верным утверждение, составляющее его содержание.
1) Два перпендикуляра к одной прямой не пересекаются.
2) Если два треугольника равны, то равны и их соответствующие стороны.
3) Если смежные углы равны, то они прямые.
4) Две прямые параллельные порознь третьей, параллельны.
Объяснение:
2. Сформулируйте теоремы, обратные к приведенным ниже. Проверьте, будет
ли верным утверждение, составляющее его содержание.
1) Два перпендикуляра к одной прямой не пересекаются.
2) Если два треугольника равны, то равны и их соответствующие стороны.
3) Если смежные углы равны, то они прямые.
4) Две прямые параллельные порознь третьей, параллельны.