Если используется гипотенуза (дана или надо вычислить), то применяются sin или cos.
Если используется противолежащий катет (дан или надо вычислить), то применяется sin.
Если используется прилежащий катет, то применяется cos.
Если в треугольнике даны оба острых угла, лучше на рисунке отметить только один угол, чтобы однозначно понять, где прилежащий и где противолежащий катеты.
Гипотенуза всегда в знаменателе.
Величины остальных углов можно найти в таблице или вычислить с калькулятора.
Объяснение:
Значения тригонометрических функций (которые нужно знать наизусть)
30 ° 45 °
60 °
sin α 12 2–√2 3–√2
cos α 3–√2 2–√2 12
tg α 3–√3 1 3–√
sinα=противолежащий катетгипотенуза sinα=ac;cosα=прилежащий катетгипотенуза cosα=bc;tgα=противолежащий катетприлежащий катетtgα=ab.
Как выбрать правильную функцию?
Если используются только катеты, применяется tg.
Если используется гипотенуза (дана или надо вычислить), то применяются sin или cos.
Если используется противолежащий катет (дан или надо вычислить), то применяется sin.
Если используется прилежащий катет, то применяется cos.
Если в треугольнике даны оба острых угла, лучше на рисунке отметить только один угол, чтобы однозначно понять, где прилежащий и где противолежащий катеты.
Гипотенуза всегда в знаменателе.
Величины остальных углов можно найти в таблице или вычислить с калькулятора.
Найдем площадь диагонального сечения. Это прямоугольник, у которого одна сторона равна а, а вторая - диагональ грани, равна a√2.
Площадь сечения S(сеч) = a*a√2 = a^2*√2 = D^2*√2/3
Площадь полной поверхности S(куб) = 6a^2 = 6D^2/3 = 2D^2
Объем куба V(куб) = a^3 = D^3/√27 = D^3*√3/9
Подставляем числа
1) D = 3 м; S(сеч) = 9√2/3 = 3√2 м^2; S(куб) = 2D^2 = 18 м^2;
V(куб) = 27√3/9 = 3√3 м^3
2) D = 6 дм; S(сеч) = 36√2/3 = 18√2 дм^2; S(куб) = 2D^2 = 72 дм^2;
V(куб) = 216√3/9 = 24√3 дм^3
2. Диагональ основания d = a√2.
Половина диагонали d/2, высота пирамиды h и боковое ребро L образуют прямоугольный треугольник. По теореме Пифагора.
L = √((d/2)^2 + h^2) = √(a^2/2 + h^2)
h = √(L^2 - (d/2)^2) = √(L^2 - a^2/2)
Апофема b, боковое ребро L и половина основания a/2 тоже образуют прямоугольный треугольник. По теореме Пифагора
b = √(L^2 - (a/2)^2) = √(4L^2 - a^2)/2
Площадь основания S(осн) = a^2.
Площадь боковой грани
S(гр) = a*b/2 = a/2*√(4L^2 - a^2)/2 = a√(4L^2 - a^2)/4
Площадь боковой поверхности
S(бок) = 4*S(гр) = a√(4L^2 - a^2)
Площадь полной поверхности
S(пир) = S(осн) + S(бок) = a^2 + a√(4L^2 - a^2)
Объем V(пир) = 1/3*a^2*h
Подставляем числа:
1) a = 2 см, h = 4 см, L = √(a^2/2 + h^2) = √(4/2 + 16) = √18 = 3√2 см
S(бок) = 2√(4*18 - 4) = 4√(18 - 1) = 4√17 см^2 ; S(пир) = 4 + 4√17 см^2
V(пир) = 1/3*2^2*4 = 1/3*4*4 = 16/3 см^3
2) a = 6 дм, L = 5 дм, h = √(L^2 - a^2/2) = √(25 - 36/2) = √(25-18) = √7 дм
S(бок) = 6*√(4*25 - 36) = 6*8 = 48 дм^2; S(пир) = 36 + 48 = 84 дм^2
V(пир) = 1/3*6^2*√7 = 1/3*36*√7 = 12√7 дм^3