Немного переиначу - пусть D лежит на AB, DE II AC, CD и AE пересекаются в точке N. Я буду доказывать, что BN - медиана ABC. Нужно обозначить еще две точки - M - точка пересечения продолжения BN и AC, K - точка пересечения BN и DE. Треугольники DKN и MNC подобны, то есть MN/NK = CM/DK; точно также из подобия треугольников EKN и ANM получается MN/NK = AM/KE; если обозначить MN/NK = x; то CM = DK*x; AM = KE*x; то есть CM/AM = DK/KE; (1) Далее, поскольку DE II AB, то треугольники DKB и AMB подобны, и DK/AM = BK/BM; точно так же из подобия треугольников BKE и BMC следует KE/CM = BK/BM; если обозначить BK/BM = y; то DK = AM*y; KE = CM*y; то есть CM/AM = KE/DK; (2) Если перемножить равенства (1) и (2), получится (CM/AM)^2 = 1; то есть CM = AM; Вот так решается
Треугольники DKN и MNC подобны, то есть MN/NK = CM/DK; точно также из подобия треугольников EKN и ANM получается MN/NK = AM/KE; если обозначить
MN/NK = x; то CM = DK*x; AM = KE*x;
то есть CM/AM = DK/KE; (1)
Далее, поскольку DE II AB, то треугольники DKB и AMB подобны, и DK/AM = BK/BM; точно так же из подобия треугольников BKE и BMC следует KE/CM = BK/BM; если обозначить BK/BM = y; то DK = AM*y; KE = CM*y;
то есть CM/AM = KE/DK; (2)
Если перемножить равенства (1) и (2), получится (CM/AM)^2 = 1; то есть CM = AM; Вот так решается
a+b = 20 см
1) a = x (ширина)
b = 4x (длина)
4x + x = 20 см
5x = 20 см
x = 4 см (ширина)
4x = 16 см (длина)
2) a - x (ширина)
b = x+7 (длина)
2х + 7 = 20
2х = 13
х = 6,5 (ширина)
х+7 = 13,5 (длина)
2. Треугольник КРА - равнобедренный:
с основанием 7см и боковыми сторонами = 4,5см, поскльку А - середина диагонали =9см.
Тогда периметр = 7 + 2*4,5 = 16см.
Равнобедренность треугольника АКР вытекает из того, что угол ОКР = углу АКР, а угол МРК = углу АРК.
3. Ну начнём с того, что углы все прямые. 4х к 5х значит, что угол ВАС = 40°, а угол САD = 50°.
Углы треугольника АВС:
угол ВАС = 40°
угол АВС = 90°
угол АСВ = 50°
Углы треугольника СAD:
угол СAD = 50°
угол АСD = 40°
угол ADC = 90°
И где там угол 160°? Его там и быть не может.