Если прямая (EF), не лежащая в плоскости (ABCD) параллельна прямой B₁C₁, лежащей в данной плоскости, то она параллельна этой плоскости. То есть EF ║ABCD или, что то же самое EF ║ABC, и утверждение 1) верное.
2) EF ║ B₁C₁ как средняя линия и B₁C₁ ║ А₁D₁ как параллельные рёбра куба. Следовательно, EF ║ А₁D₁.
Если прямая (EF), не лежащая в плоскости (AА₁D₁D) параллельна прямой A₁D₁, лежащей в данной плоскости, то она параллельна этой плоскости. То есть EF ║AА₁D₁D или, что то же самое EF ║AА₁D₁, и утверждение 2) верное.
3) EF ║ B₁C₁ как средняя линия и ребро куба B₁C₁ ⊥ плоскости грани АВВ₁А₁.
Если одна из параллельных прямых перпендикулярна плоскости, то и другая прямая перпендикулярна этой плоскости, то есть EF ⊥АВВ₁А₁ или, что то же самое EF ⊥ AА₁В₁, и утверждение 3) неверное.
4) Поскольку мы уже установили верные утверждения, то утверждение 4) неверное
Утверждения 1) и 2) верные
Объяснение:
Смотри прикреплённый рисунок.
1) EF ║ B₁C₁ как средняя линия Δ DB₁C₁.
Если прямая (EF), не лежащая в плоскости (ABCD) параллельна прямой B₁C₁, лежащей в данной плоскости, то она параллельна этой плоскости. То есть EF ║ABCD или, что то же самое EF ║ABC, и утверждение 1) верное.
2) EF ║ B₁C₁ как средняя линия и B₁C₁ ║ А₁D₁ как параллельные рёбра куба. Следовательно, EF ║ А₁D₁.
Если прямая (EF), не лежащая в плоскости (AА₁D₁D) параллельна прямой A₁D₁, лежащей в данной плоскости, то она параллельна этой плоскости. То есть EF ║AА₁D₁D или, что то же самое EF ║AА₁D₁, и утверждение 2) верное.
3) EF ║ B₁C₁ как средняя линия и ребро куба B₁C₁ ⊥ плоскости грани АВВ₁А₁.
Если одна из параллельных прямых перпендикулярна плоскости, то и другая прямая перпендикулярна этой плоскости, то есть EF ⊥АВВ₁А₁ или, что то же самое EF ⊥ AА₁В₁, и утверждение 3) неверное.
4) Поскольку мы уже установили верные утверждения, то утверждение 4) неверное
ЛОжные
Прямоугольный треугольник может быть равносторонним. Нет. потому что тогда и углы все равны по 60 градусов, а как же с прямым?)
В прямоугольном треугольнике сумма всех углов равна 90 градусов.
(только если слово всех заменть словом острых, то будет верно)
В прямоуг. треуг. длина любой стороны меньше суммы двух других, а не равна сумме. В этом ошибка.
В прямоуг. треуг. против угла в 60 градусов лежит катет, вдвое меньше гипотенузы. (надо заменить 60 на 30. будет тогда верно)
В равнобедр. треуг. острые углы по 45 градусов (нет. но если это прямоуг. равнобедренный. тогда верно)
В прямоуг. треуг. против угла в 30 градусов лежит катет вдвое больше (а надо меньше, чтобы правильно) гипотенузы.