ABCD - параллелограмм AK и KD - биссектрисы L BAK = L KAD = L A \2 = L 1 L AKB = KAD = L A \2 = L 1 L ADK = L KDC = L D \2 = L 2 Треугольник AKD: L AKD = 180 - (L AKB + L ADK) = 180 - (L 1 + L 2) Треугольник KCD: L DKC = 180 - (L KDC + L C) L C = L A = 2 * L1 L KDC = L 2 => L DKC = 180 - (L 2 + 2 * L 1) Угол BKD (сумма двух углов) равна: L BKD = L AKB + L AKD = L 1 + 180 - (L 1 + L 2) = 180 - L 2 Тогда: L DKC = 180 - L BKD = 180 - (180 - L 2) = L 2 => L DKC = L KDC => в треугольнике DKC KC = CD Но в параллелограмме AB = CD и ранее найдено AB = BK => BK = KC => точка С - середина ВС
Сделаем рисунок. Основание данной правильной пирамиды - квадрат ABCD Из точки К проведем прямую KN параллельно АС. Прямая параллельна плоскости, когда она параллельна прямой, лежащей в этой плоскости. Следовательно, АС будет параллельна плоскости, которой принадлежит прямая КN, проведенная параллельно АС, и наоборот, плоскость, в которой лежит КN, параллельна прямой АС. Рассмотрим треугольник АSС. В нем КN параллельна АС и отсекает подобный треугольнику АSС треугольник KSC с коэффициентом подобия, следующим из отношения SK:AK SK - 2 части, AK - 1 часть, AS=3 части. АS:KS=3:2 ⇒ коэффициент подобия k=3/2 АС:KN=3/2 Диагональ квадрата d=a√2, сторона квадрата в основании равна 2, ⇒AC=2√2 2√2:KN=3/2 3KN=4√2 KN=(4√2):3 В подобных фигурах все линейные размеры пропорциональны. SP:PO=SK:AK=2:1 SO- высота пирамиды, а также высота и медиана равнобедренного треугольника DSB, а точка Р, которая делит медиану в отношении 2:1, - точка, в которой пересекаются медианы треугольника. Прямая ВМ лежит в плоскости сечения, проходит через точку пересечения медиан Р в треугольнике BSD и является его медианой. АС⊥SO, KN||AC, следовательно, KN⊥плоскости треугольника DSB и любой прямой, лежащей в этой плоскости. KN⊥BМ, и эти отрезки - диагонали четырехугольника KMNB, ограничивающего плоскость сечения. Площадь выпуклого четырехугольника, диагонали которого взаимно перпендикулярны, равна половине произведения этих диагоналей. Длина диагонали KN уже найдена, она равна (4√2):3. Длину диагонали МВ, как медианы треугольника SDB, найдем по формуле медианы: М=0,5√(2а²+2b ² - c ² ), где с - сторона, к которой проведена медиана, а и b - две другие стороны. М=0,5√(2SB²+2BD² - SD² ) М=0,5√(32+16 - 16 )=0,5√32=2√2 S KMNB=((2√2)*(4√2):3)):2=8/3 = 2 ²|₃ (единиц площади) ------- [email protected]
AK и KD - биссектрисы
L BAK = L KAD = L A \2 = L 1
L AKB = KAD = L A \2 = L 1
L ADK = L KDC = L D \2 = L 2
Треугольник AKD:
L AKD = 180 - (L AKB + L ADK) = 180 - (L 1 + L 2)
Треугольник KCD:
L DKC = 180 - (L KDC + L C)
L C = L A = 2 * L1
L KDC = L 2
=>
L DKC = 180 - (L 2 + 2 * L 1)
Угол BKD (сумма двух углов) равна:
L BKD = L AKB + L AKD = L 1 + 180 - (L 1 + L 2) = 180 - L 2
Тогда:
L DKC = 180 - L BKD = 180 - (180 - L 2) = L 2
=>
L DKC = L KDC =>
в треугольнике DKC
KC = CD
Но в параллелограмме AB = CD и ранее найдено AB = BK =>
BK = KC =>
точка С - середина ВС
Основание данной правильной пирамиды - квадрат ABCD
Из точки К проведем прямую KN параллельно АС.
Прямая параллельна плоскости, когда она параллельна прямой, лежащей в этой плоскости.
Следовательно, АС будет параллельна плоскости, которой принадлежит прямая КN, проведенная параллельно АС, и наоборот, плоскость, в которой лежит КN, параллельна прямой АС.
Рассмотрим треугольник АSС.
В нем КN параллельна АС и отсекает подобный треугольнику АSС треугольник KSC с коэффициентом подобия, следующим из отношения SK:AK
SK - 2 части, AK - 1 часть, AS=3 части.
АS:KS=3:2 ⇒ коэффициент подобия k=3/2
АС:KN=3/2
Диагональ квадрата d=a√2,
сторона квадрата в основании равна 2, ⇒AC=2√2
2√2:KN=3/2
3KN=4√2
KN=(4√2):3
В подобных фигурах все линейные размеры пропорциональны.
SP:PO=SK:AK=2:1
SO- высота пирамиды, а также высота и медиана равнобедренного треугольника DSB, а точка Р, которая делит медиану в отношении 2:1, - точка, в которой пересекаются медианы треугольника.
Прямая ВМ лежит в плоскости сечения, проходит через точку пересечения медиан Р в треугольнике BSD и является его медианой.
АС⊥SO, KN||AC, следовательно,
KN⊥плоскости треугольника DSB и любой прямой, лежащей в этой плоскости.
KN⊥BМ, и эти отрезки - диагонали четырехугольника KMNB, ограничивающего плоскость сечения.
Площадь выпуклого четырехугольника, диагонали которого взаимно перпендикулярны, равна половине произведения этих диагоналей.
Длина диагонали KN уже найдена, она равна (4√2):3.
Длину диагонали МВ, как медианы треугольника SDB, найдем по формуле медианы:
М=0,5√(2а²+2b ² - c ² ), где с - сторона, к которой проведена медиана, а и b - две другие стороны.
М=0,5√(2SB²+2BD² - SD² )
М=0,5√(32+16 - 16 )=0,5√32=2√2
S KMNB=((2√2)*(4√2):3)):2=8/3 = 2 ²|₃ (единиц площади)
-------
[email protected]